BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 9463926)

  • 1. Projection of health benefits from ambient ozone reduction related to the use of methyl tertiary butyl ether (MTBE) in the reformulated gasoline program.
    Erdal S; Gong H; Linn WS; Rykowski R
    Risk Anal; 1997 Dec; 17(6):693-704. PubMed ID: 9463926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analysis of the health benefits associated with the use of MTBE reformulated gasoline and oxygenated fuels in reducing atmospheric concentrations of selected volatile organic compounds.
    Spitzer HL
    Risk Anal; 1997 Dec; 17(6):683-91. PubMed ID: 9463925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of methyl tertiary butyl ether concentrations on exhaust emissions from gasoline used in the metropolitan area of Mexico City.
    Schifter I; Díaz L; Avalos S; Vera M; Barrera A; López-Salinas E
    J Air Waste Manag Assoc; 2000 Apr; 50(4):488-94. PubMed ID: 10785999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicology and human health effects following exposure to oxygenated or reformulated gasoline.
    Ahmed FE
    Toxicol Lett; 2001 Sep; 123(2-3):89-113. PubMed ID: 11641038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicity study of air pollution and mortality in Latin America (the ESCALA study).
    Romieu I; Gouveia N; Cifuentes LA; de Leon AP; Junger W; Vera J; Strappa V; Hurtado-Díaz M; Miranda-Soberanis V; Rojas-Bracho L; Carbajal-Arroyo L; Tzintzun-Cervantes G;
    Res Rep Health Eff Inst; 2012 Oct; (171):5-86. PubMed ID: 23311234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of gasoline formulation on the formation of photosmog: a box model study.
    Geiger H; Becker KH; Wiesen P
    J Air Waste Manag Assoc; 2003 Apr; 53(4):425-33. PubMed ID: 12708506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paradoxical ozone associations could be due to methyl nitrite from combustion of methyl ethers or esters in engine fuels.
    Joseph PM
    Environ Int; 2007 Nov; 33(8):1090-106. PubMed ID: 17716731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carcinogenicity of methyl-tertiary butyl ether in gasoline.
    Mehlman MA
    Ann N Y Acad Sci; 2002 Dec; 982():149-59. PubMed ID: 12562634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data available for evaluating the risks and benefits of MTBE and ethanol as alternative fuel oxygenates.
    Williams PR; Cushing CA; Sheehan PJ
    Risk Anal; 2003 Oct; 23(5):1085-115. PubMed ID: 12969421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. O3/H2O2 treatment of methyl-tert-butyl ether (MTBE) in contaminated waters.
    Safarzadeh-Amiri A
    Water Res; 2001 Oct; 35(15):3706-14. PubMed ID: 11561633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure to methyl tertiary butyl ether and benzene in close proximity to service stations.
    Jo WK; Oh JW
    J Air Waste Manag Assoc; 2001 Aug; 51(8):1122-8. PubMed ID: 11518287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk characterization of methyl tertiary butyl ether (MTBE) in tap water.
    Stern BR; Tardiff RG
    Risk Anal; 1997 Dec; 17(6):727-43. PubMed ID: 9463929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ozone and other pollutants on the pulmonary function of adult hikers.
    Korrick SA; Neas LM; Dockery DW; Gold DR; Allen GA; Hill LB; Kimball KD; Rosner BA; Speizer FE
    Environ Health Perspect; 1998 Feb; 106(2):93-9. PubMed ID: 9435151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personal and ambient exposures to air toxics in Camden, New Jersey.
    Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J;
    Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemiologic basis for photochemical oxidant standard.
    Bates DV
    Environ Health Perspect; 1983 Oct; 52():125-9. PubMed ID: 6653514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions.
    Cai C; Kelly JT; Avise JC; Kaduwela AP; Stockwell WR
    J Air Waste Manag Assoc; 2011 May; 61(5):559-72. PubMed ID: 21608496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An assessment of the sensitivity and reliability of the relative reduction factor approach in the development of 8-hr ozone attainment plans.
    Jones JM; Hogrefe C; Henry RF; Ku JY; Sistla G
    J Air Waste Manag Assoc; 2005 Jan; 55(1):13-9. PubMed ID: 15704536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical smog modeling for assessment of potential impacts of different management strategies on air quality of the Bangkok Metropolitan Region, Thailand.
    Oanh NT; Zhang B
    J Air Waste Manag Assoc; 2004 Oct; 54(10):1321-38. PubMed ID: 15540584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled human exposure to methyl tertiary butyl ether in gasoline: symptoms, psychophysiologic and neurobehavioral responses of self-reported sensitive persons.
    Fiedler N; Kelly-McNeil K; Mohr S; Lehrer P; Opiekun RE; Lee C; Wainman T; Hamer R; Weisel C; Edelberg R; Lioy PJ
    Environ Health Perspect; 2000 Aug; 108(8):753-63. PubMed ID: 10964796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis.
    Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.