These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 9463944)

  • 21. Extractive biodecolorization of triphenylmethane dyes in cloud point system by Aeromonas hydrophila DN322p.
    Pan T; Ren S; Xu M; Sun G; Guo J
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):6051-5. PubMed ID: 23008002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biofilm formation of filamentous fungi Coriolopsis sp. on simple muslin cloth to enhance removal of triphenylmethane dyes.
    Munck C; Thierry E; Gräßle S; Chen SH; Ting ASY
    J Environ Manage; 2018 May; 214():261-266. PubMed ID: 29533823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradation of crystal violet mediated by CotA from Bacillus amyloliquefaciens.
    Yang J; Zhang Y; Wang S; Li S; Wang Y; Wang S; Li H
    J Biosci Bioeng; 2020 Oct; 130(4):347-351. PubMed ID: 32536566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural insight into bioremediation of triphenylmethane dyes by Citrobacter sp. triphenylmethane reductase.
    Kim MH; Kim Y; Park HJ; Lee JS; Kwak SN; Jung WH; Lee SG; Kim D; Lee YC; Oh TK
    J Biol Chem; 2008 Nov; 283(46):31981-90. PubMed ID: 18782772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decolorization of synthetic dyes by the deuteromycete Pestalotiopsis guepinii CLPS no. 786 strain.
    Saparrat MC; Hammer E
    J Basic Microbiol; 2006; 46(1):28-33. PubMed ID: 16463315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review.
    Mishra S; Maiti A
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8286-8314. PubMed ID: 29383646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decolorization and biotransformation of triphenylmethane dye, methyl violet, by Aspergillus sp. isolated from Ladakh, India.
    Kumar CG; Mongolla P; Basha A; Joseph J; Sarma VU; Kamal A
    J Microbiol Biotechnol; 2011 Mar; 21(3):267-73. PubMed ID: 21464597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathway and molecular mechanisms for malachite green biodegradation in Exiguobacterium sp. MG2.
    Wang J; Gao F; Liu Z; Qiao M; Niu X; Zhang KQ; Huang X
    PLoS One; 2012; 7(12):e51808. PubMed ID: 23251629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in the biodegradation of azo dyes.
    Shi Y; Yang Z; Xing L; Zhang X; Li X; Zhang D
    World J Microbiol Biotechnol; 2021 Jul; 37(8):137. PubMed ID: 34273009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic characterization of plasmid-associated triphenylmethane reductase in Listeria monocytogenes.
    Dutta V; Elhanafi D; Osborne J; Martinez MR; Kathariou S
    Appl Environ Microbiol; 2014 Sep; 80(17):5379-85. PubMed ID: 24951782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decolorization of triphenylmethane dye-bath effluent in an integrated two-stage anaerobic reactor.
    Rai HS; Singh S; Cheema PP; Bansal TK; Banerjee UC
    J Environ Manage; 2007 May; 83(3):290-7. PubMed ID: 16814454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402.
    Sarnaik S; Kanekar P
    Appl Microbiol Biotechnol; 1999 Aug; 52(2):251-4. PubMed ID: 10499264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports.
    Przystaś W; Zabłocka-Godlewska E; Grabińska-Sota E
    Braz J Microbiol; 2018; 49(2):285-295. PubMed ID: 29129408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradation of crystal violet by newly isolated bacteria.
    Kwak SJ; Park J; Sim Y; Choi H; Cho J; Lee YM
    PeerJ; 2024; 12():e17442. PubMed ID: 38818456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of static and shake culture in the decolorization of textile dyes and dye effluents by Phanerochaete chrysoporium.
    Sani RK; Azmi W; Banerjee UC
    Folia Microbiol (Praha); 1998; 43(1):85-8. PubMed ID: 9616055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dye removal by immobilised fungi.
    Rodríguez Couto S
    Biotechnol Adv; 2009; 27(3):227-35. PubMed ID: 19211032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decolorization and biodegradation of azo dye, reactive blue 59 by aerobic granules.
    Kolekar YM; Nemade HN; Markad VL; Adav SS; Patole MS; Kodam KM
    Bioresour Technol; 2012 Jan; 104():818-22. PubMed ID: 22153293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of triphenylmethane dye crystal violet by Cedecea davisae.
    Cao DJ; Wang JJ; Zhang Q; Wen YZ; Dong B; Liu RJ; Yang X; Geng G
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 210():9-13. PubMed ID: 30419454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decolorizing activity of malachite green and its mechanisms involved in dye biodegradation by Achromobacter xylosoxidans MG1.
    Wang J; Qiao M; Wei K; Ding J; Liu Z; Zhang KQ; Huang X
    J Mol Microbiol Biotechnol; 2011; 20(4):220-7. PubMed ID: 21865764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation of malachite green by an endophytic bacterium Klebsiella aerogenes S27 involving a novel oxidoreductase.
    Shang N; Ding M; Dai M; Si H; Li S; Zhao G
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2141-2153. PubMed ID: 30613897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.