BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9464422)

  • 21. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments.
    Rowland HA; Boothman C; Pancost R; Gault AG; Polya DA; Lloyd JR
    J Environ Qual; 2009; 38(4):1598-607. PubMed ID: 19549936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mass balance approach to investigate arsenic cycling in a petroleum plume.
    Ziegler BA; Schreiber ME; Cozzarelli IM; Crystal Ng GH
    Environ Pollut; 2017 Dec; 231(Pt 2):1351-1361. PubMed ID: 28943347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of rhamnolipids on enhanced anaerobic degradation of petroleum hydrocarbons in nitrate and sulfate sediments.
    Song B; Tang J; Zhen M; Liu X
    Sci Total Environ; 2019 Aug; 678():438-447. PubMed ID: 31077922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria.
    Abu Laban N; Selesi D; Jobelius C; Meckenstock RU
    FEMS Microbiol Ecol; 2009 Jun; 68(3):300-11. PubMed ID: 19416354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA).
    Finneran KT; Lovley DR
    Environ Sci Technol; 2001 May; 35(9):1785-90. PubMed ID: 11355193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sulfur cycling and biodegradation in contaminated aquifers: insights from stable isotope investigations.
    Knöller K; Vogt C; Feisthauer S; Weise SM; Weiss H; Richnow HH
    Environ Sci Technol; 2008 Nov; 42(21):7807-12. PubMed ID: 19031864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrinsic bioremediation in a solvent-contaminated alluvial groundwater.
    Williams RA; Shuttle KA; Kunkler JL; Madsen EL; Hooper SW
    J Ind Microbiol Biotechnol; 1997; 18(2-3):177-88. PubMed ID: 9134765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture.
    Annweiler E; Materna A; Safinowski M; Kappler A; Richnow HH; Michaelis W; Meckenstock RU
    Appl Environ Microbiol; 2000 Dec; 66(12):5329-33. PubMed ID: 11097910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of bioaugmentation on sorption and desorption of benzene, 1,3,5-trimethylbenzene and naphthalene in freshly-spiked and historically-contaminated sediments.
    Li Y; Chen L; Liu Y; Liu F; Fallgren PH; Jin S
    Chemosphere; 2016 Nov; 162():1-7. PubMed ID: 27474910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of BTX by dissimilatory iron-reducing cultures.
    Botton S; Parsons JR
    Biodegradation; 2007 Jun; 18(3):371-81. PubMed ID: 17091352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures.
    Jahn MK; Haderlein SB; Meckenstock RU
    Appl Environ Microbiol; 2005 Jun; 71(6):3355-8. PubMed ID: 15933041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume.
    Ziegler BA; Schreiber ME; Cozzarelli IM
    J Contam Hydrol; 2017 Sep; 204():90-101. PubMed ID: 28797670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioremediation of petroleum hydrocarbons in anoxic marine sediments: consequences on the speciation of heavy metals.
    Dell'Anno A; Beolchini F; Gabellini M; Rocchetti L; Pusceddu A; Danovaro R
    Mar Pollut Bull; 2009 Dec; 58(12):1808-14. PubMed ID: 19740495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process.
    Beller HR; Grbić-Galić D; Reinhard M
    Appl Environ Microbiol; 1992 Mar; 58(3):786-93. PubMed ID: 1575481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon and hydrogen isotopic fractionation during anaerobic biodegradation of benzene.
    Mancini SA; Ulrich AC; Lacrampe-Couloume G; Sleep B; Edwards EA; Lollar BS
    Appl Environ Microbiol; 2003 Jan; 69(1):191-8. PubMed ID: 12513995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments.
    Phelps CD; Young LY
    Biodegradation; 1999 Feb; 10(1):15-25. PubMed ID: 10423837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for syntrophic butyrate metabolism under sulfate-reducing conditions in a hydrocarbon-contaminated aquifer.
    Struchtemeyer CG; Duncan KE; McInerney MJ
    FEMS Microbiol Ecol; 2011 May; 76(2):289-300. PubMed ID: 21223338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer.
    Rios-Hernandez LA; Gieg LM; Suflita JM
    Appl Environ Microbiol; 2003 Jan; 69(1):434-43. PubMed ID: 12514025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate.
    Cunningham JA; Rahme H; Hopkins GD; Lebron C; Reinhard M
    Environ Sci Technol; 2001 Apr; 35(8):1663-70. PubMed ID: 11329718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: involved metabolic process and microbial community.
    Zhang Z; Lo IM
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5683-96. PubMed ID: 25661814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.