These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 9464562)
1. Construction of novel subtilisin E with high specificity, activity and productivity through multiple amino acid substitutions. Takagi H; Ohtsu I; Nakamori S Protein Eng; 1997 Sep; 10(9):985-9. PubMed ID: 9464562 [TBL] [Abstract][Full Text] [Related]
2. Improved autoprocessing efficiency of mutant subtilisins E with altered specificity by engineering of the pro-region. Takahashi M; Hasuura Y; Nakamori S; Takagi H J Biochem; 2001 Jul; 130(1):99-106. PubMed ID: 11432785 [TBL] [Abstract][Full Text] [Related]
3. Restriction of substrate specificity of subtilisin E by introduction of a side chain into a conserved glycine residue. Takagi H; Maeda T; Ohtsu I; Tsai YC; Nakamori S FEBS Lett; 1996 Oct; 395(2-3):127-32. PubMed ID: 8898079 [TBL] [Abstract][Full Text] [Related]
4. Random mutagenesis into the conserved Gly154 of subtilisin E: isolation and characterization of the revertant enzymes. Takagi H; Yamamoto M; Ohtsu I; Nakamori S Protein Eng; 1998 Dec; 11(12):1205-10. PubMed ID: 9930669 [TBL] [Abstract][Full Text] [Related]
5. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation. Weng M; Deng X; Bao W; Zhu L; Wu J; Cai Y; Jia Y; Zheng Z; Zou G Biochem Biophys Res Commun; 2015 Sep; 465(3):580-6. PubMed ID: 26291268 [TBL] [Abstract][Full Text] [Related]
6. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates. Ballinger MD; Tom J; Wells JA Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837 [TBL] [Abstract][Full Text] [Related]
7. Mutant subtilisin E with enhanced protease activity obtained by site-directed mutagenesis. Takagi H; Morinaga Y; Ikemura H; Inouye M J Biol Chem; 1988 Dec; 263(36):19592-6. PubMed ID: 3143728 [TBL] [Abstract][Full Text] [Related]
8. Engineering subtilisin YaB: restriction of substrate specificity by the substitution of Gly124 and Gly151 with Ala. Mei HC; Liaw YC; Li YC; Wang DC; Takagi H; Tsai YC Protein Eng; 1998 Feb; 11(2):109-17. PubMed ID: 9605545 [TBL] [Abstract][Full Text] [Related]
9. Engineering a novel specificity in subtilisin BPN'. Rheinnecker M; Baker G; Eder J; Fersht AR Biochemistry; 1993 Feb; 32(5):1199-203. PubMed ID: 8448130 [TBL] [Abstract][Full Text] [Related]
10. Engineering subtilisin E for enhanced stability and activity in polar organic solvents. Takagi H; Hirai K; Maeda Y; Matsuzawa H; Nakamori S J Biochem; 2000 Apr; 127(4):617-25. PubMed ID: 10739954 [TBL] [Abstract][Full Text] [Related]
11. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation. Zheng ZL; Ye MQ; Zuo ZY; Liu ZG; Tai KC; Zou GL Biochem J; 2006 May; 395(3):509-15. PubMed ID: 16411898 [TBL] [Abstract][Full Text] [Related]
12. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. You L; Arnold FH Protein Eng; 1996 Jan; 9(1):77-83. PubMed ID: 9053906 [TBL] [Abstract][Full Text] [Related]
13. The effect of amino acid deletion in subtilisin E, based on structural comparison with a microbial alkaline elastase, on its substrate specificity and catalysis. Takagi H; Arafuka S; Inouye M; Yamasaki M J Biochem; 1992 May; 111(5):584-8. PubMed ID: 1639753 [TBL] [Abstract][Full Text] [Related]
14. Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Wells JA; Cunningham BC; Graycar TP; Estell DA Proc Natl Acad Sci U S A; 1987 Aug; 84(15):5167-71. PubMed ID: 3299378 [TBL] [Abstract][Full Text] [Related]
15. The complete amino acid substitutions at position 131 that are positively involved in cold adaptation of subtilisin BPN'. Taguchi S; Komada S; Momose H Appl Environ Microbiol; 2000 Apr; 66(4):1410-5. PubMed ID: 10742220 [TBL] [Abstract][Full Text] [Related]
16. Folding mediated by an intramolecular chaperone: autoprocessing pathway of the precursor resolved via a substrate assisted catalysis mechanism. Shinde U; Inouye M J Mol Biol; 1995 Mar; 247(3):390-5. PubMed ID: 7714895 [TBL] [Abstract][Full Text] [Related]
17. Mutational replacements of the amino acid residues forming the hydrophobic S4 binding pocket of subtilisin 309 from Bacillus lentus. Sørensen SB; Bech LM; Meldal M; Breddam K Biochemistry; 1993 Sep; 32(35):8994-9. PubMed ID: 8369272 [TBL] [Abstract][Full Text] [Related]
18. Mutational replacements in subtilisin 309. Val104 has a modulating effect on the P4 substrate preference. Bech LM; Sørensen SB; Breddam K Eur J Biochem; 1992 Nov; 209(3):869-74. PubMed ID: 1425695 [TBL] [Abstract][Full Text] [Related]
19. Catalysis of a protein folding reaction: thermodynamic and kinetic analysis of subtilisin BPN' interactions with its propeptide fragment. Strausberg S; Alexander P; Wang L; Schwarz F; Bryan P Biochemistry; 1993 Aug; 32(32):8112-9. PubMed ID: 8347611 [TBL] [Abstract][Full Text] [Related]
20. Engineering enzyme specificity by "substrate-assisted catalysis". Carter P; Wells JA Science; 1987 Jul; 237(4813):394-9. PubMed ID: 3299704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]