These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. The relationship between rumen acidosis resistance and expression of genes involved in regulation of intracellular pH and butyrate metabolism of ruminal epithelial cells in steers. Schlau N; Guan LL; Oba M J Dairy Sci; 2012 Oct; 95(10):5866-75. PubMed ID: 22863095 [TBL] [Abstract][Full Text] [Related]
24. Grain-based versus alfalfa-based subacute ruminal acidosis induction experiments: Similarities and differences between changes in milk fatty acids. Colman E; Khafipour E; Vlaeminck B; De Baets B; Plaizier JC; Fievez V J Dairy Sci; 2013 Jul; 96(7):4100-11. PubMed ID: 23628250 [TBL] [Abstract][Full Text] [Related]
25. Rumen microbial changes in cattle fed diets with or without salinomycin. Olumeyan DB; Nagaraja TG; Miller GW; Frey RA; Boyer JE Appl Environ Microbiol; 1986 Feb; 51(2):340-5. PubMed ID: 3954347 [TBL] [Abstract][Full Text] [Related]
26. The effect of slaframine on salivary output and subacute and acute acidosis in growing beef steers. Hibbard B; Peters JP; Chester ST; Robinson JA; Kotarski SF; Croom WJ; Hagler WM J Anim Sci; 1995 Feb; 73(2):516-25. PubMed ID: 7601786 [TBL] [Abstract][Full Text] [Related]
27. Steam-rolled wheat diets for finishing cattle: effects of dietary roughage and feed intake on finishing steer performance and ruminal metabolism. Kreikemeier KK; Harmon DL; Brandt RT; Nagaraja TG; Cochran RC J Anim Sci; 1990 Jul; 68(7):2130-41. PubMed ID: 2166734 [TBL] [Abstract][Full Text] [Related]
28. Effects of corn silage particle size, supplemental hay, and forage-to-concentrate ratio on rumen pH, feed preference, and milk fat profile of dairy cattle. Kmicikewycz AD; Harvatine KJ; Heinrichs AJ J Dairy Sci; 2015 Jul; 98(7):4850-68. PubMed ID: 25958273 [TBL] [Abstract][Full Text] [Related]
29. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet. Gao X; Oba M J Dairy Sci; 2014 May; 97(5):3006-16. PubMed ID: 24612805 [TBL] [Abstract][Full Text] [Related]
30. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. Ghorbani GR; Morgavi DP; Beauchemin KA; Leedle JA J Anim Sci; 2002 Jul; 80(7):1977-85. PubMed ID: 12162668 [TBL] [Abstract][Full Text] [Related]
31. Effect of level and type of fat on subacute acidosis in cattle fed dry-rolled corn finishing diets. Krehbiel CR; Stock RA; Shain DH; Richards CJ; Ham GA; McCoy RA; Klopfenstein TJ; Britton RA; Huffman RP J Anim Sci; 1995 Aug; 73(8):2438-46. PubMed ID: 8567481 [TBL] [Abstract][Full Text] [Related]
32. Relationship between thiamine and subacute ruminal acidosis induced by a high-grain diet in dairy cows. Pan XH; Yang L; Xue FG; Xin HR; Jiang LS; Xiong BH; Beckers Y J Dairy Sci; 2016 Nov; 99(11):8790-8801. PubMed ID: 27568043 [TBL] [Abstract][Full Text] [Related]
33. Using Sweet Bran instead of forage during grain adaptation in finishing feedlot cattle. Huls TJ; Luebbe MK; Watson AK; Meyer NF; Griffin WA; Klopfenstein TJ; Stock RA; Erickson GE J Anim Sci; 2016 Mar; 94(3):1149-58. PubMed ID: 27065276 [TBL] [Abstract][Full Text] [Related]
34. Direct-fed microbials containing lactate-producing bacteria influence ruminal fermentation but not lactate utilization in steers fed a high-concentrate diet. Kenney NM; Vanzant ES; Harmon DL; McLeod KR J Anim Sci; 2015 May; 93(5):2336-48. PubMed ID: 26020329 [TBL] [Abstract][Full Text] [Related]
35. Effects of the interaction of forage and supplement type on digestibility and ruminal fermentation in beef cattle. Stierwalt MR; Blalock HM; Felix TL J Anim Sci; 2017 Feb; 95(2):892-900. PubMed ID: 28380592 [TBL] [Abstract][Full Text] [Related]
36. Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows. Hook SE; Steele MA; Northwood KS; Dijkstra J; France J; Wright AD; McBride BW FEMS Microbiol Ecol; 2011 Nov; 78(2):275-84. PubMed ID: 21692816 [TBL] [Abstract][Full Text] [Related]
37. Changes in the relative population size of selected ruminal bacteria following an induced episode of acidosis in beef heifers receiving viable and non-viable active dried yeast. Mohammed R; Vyas D; Yang WZ; Beauchemin KA J Appl Microbiol; 2017 Jun; 122(6):1483-1496. PubMed ID: 28317285 [TBL] [Abstract][Full Text] [Related]
38. Transient feeding of a concentrate-rich diet increases the severity of subacute ruminal acidosis in dairy cattle. Pourazad P; Khiaosa-Ard R; Qumar M; Wetzels SU; Klevenhusen F; Metzler-Zebeli BU; Zebeli Q J Anim Sci; 2016 Feb; 94(2):726-38. PubMed ID: 27065143 [TBL] [Abstract][Full Text] [Related]
39. Altering physically effective fiber intake through forage proportion and particle length: chewing and ruminal pH. Yang WZ; Beauchemin KA J Dairy Sci; 2007 Jun; 90(6):2826-38. PubMed ID: 17517723 [TBL] [Abstract][Full Text] [Related]
40. Efficacy of laidlomycin propionate to reduce ruminal acidosis in cattle. Bauer ML; Herold DW; Britton RA; Stock RA; Klopfenstein TJ; Yates DA J Anim Sci; 1995 Nov; 73(11):3445-54. PubMed ID: 8586605 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]