These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 9465022)
1. Amber suppression in Escherichia coli by unusual mitochondria-like transfer RNAs. Bourdeau V; Steinberg SV; Ferbeyre G; Emond R; Cermakian N; Cedergren R Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1375-80. PubMed ID: 9465022 [TBL] [Abstract][Full Text] [Related]
2. A nucleotide change in the anticodon of an Escherichia coli serine transfer RNA results in supD-amber suppression. Steege DA Nucleic Acids Res; 1983 Jun; 11(11):3823-32. PubMed ID: 6344015 [TBL] [Abstract][Full Text] [Related]
3. Novel transfer RNAs that are active in Escherichia coli. Hou YM; Schimmel P Biochemistry; 1992 May; 31(17):4157-60. PubMed ID: 1567861 [TBL] [Abstract][Full Text] [Related]
4. Actions of the anticodon arm in translation on the phenotypes of RNA mutants. Yarus M; Cline SW; Wier P; Breeden L; Thompson RC J Mol Biol; 1986 Nov; 192(2):235-55. PubMed ID: 2435916 [TBL] [Abstract][Full Text] [Related]
5. Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts. Lee CP; RajBhandary UL Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11378-82. PubMed ID: 1763051 [TBL] [Abstract][Full Text] [Related]
6. Import of amber and ochre suppressor tRNAs into mammalian cells: a general approach to site-specific insertion of amino acid analogues into proteins. Köhrer C; Xie L; Kellerer S; Varshney U; RajBhandary UL Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14310-5. PubMed ID: 11717406 [TBL] [Abstract][Full Text] [Related]
7. Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Seong BL; RajBhandary UL Proc Natl Acad Sci U S A; 1987 Jan; 84(2):334-8. PubMed ID: 3540960 [TBL] [Abstract][Full Text] [Related]
8. An anticodon change switches the identity of E. coli tRNA(mMet) from methionine to threonine. Schulman LH; Pelka H Nucleic Acids Res; 1990 Jan; 18(2):285-9. PubMed ID: 2109304 [TBL] [Abstract][Full Text] [Related]
9. Role of the three consecutive G:C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli. Mandal N; Mangroo D; Dalluge JJ; McCloskey JA; Rajbhandary UL RNA; 1996 May; 2(5):473-82. PubMed ID: 8665414 [TBL] [Abstract][Full Text] [Related]
10. Genes encoding threonine tRNAs with the anticodon CGU from Escherichia coli and Pseudomonas aeruginosa. Dalrymple B; Mattick JS Biochem Int; 1986 Oct; 13(4):547-53. PubMed ID: 3099795 [TBL] [Abstract][Full Text] [Related]
11. Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. Kleina LG; Masson JM; Normanly J; Abelson J; Miller JH J Mol Biol; 1990 Jun; 213(4):705-17. PubMed ID: 2193162 [TBL] [Abstract][Full Text] [Related]
12. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases. Meinnel T; Mechulam Y; Fayat G; Blanquet S Nucleic Acids Res; 1992 Sep; 20(18):4741-6. PubMed ID: 1408786 [TBL] [Abstract][Full Text] [Related]
13. A correlation between N2-dimethylguanosine presence and alternate tRNA conformers. Steinberg S; Cedergren R RNA; 1995 Nov; 1(9):886-91. PubMed ID: 8548653 [TBL] [Abstract][Full Text] [Related]
14. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems. Fender A; Sissler M; Florentz C; Giegé R Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797 [TBL] [Abstract][Full Text] [Related]
15. tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble. Schultz DW; Yarus M J Mol Biol; 1994 Feb; 235(5):1381-94. PubMed ID: 8107080 [TBL] [Abstract][Full Text] [Related]
16. Transfer RNAs with novel cloverleaf structures. Mukai T; Vargas-Rodriguez O; Englert M; Tripp HJ; Ivanova NN; Rubin EM; Kyrpides NC; Söll D Nucleic Acids Res; 2017 Mar; 45(5):2776-2785. PubMed ID: 28076288 [TBL] [Abstract][Full Text] [Related]
17. Switching tRNA(Gln) identity from glutamine to tryptophan. Rogers MJ; Adachi T; Inokuchi H; Söll D Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3463-7. PubMed ID: 1565639 [TBL] [Abstract][Full Text] [Related]
18. A counterintuitive Mg2+-dependent and modification-assisted functional folding of mitochondrial tRNAs. Jones CI; Spencer AC; Hsu JL; Spremulli LL; Martinis SA; DeRider M; Agris PF J Mol Biol; 2006 Sep; 362(4):771-86. PubMed ID: 16949614 [TBL] [Abstract][Full Text] [Related]
19. Nucleotides that determine Escherichia coli tRNA(Arg) and tRNA(Lys) acceptor identities revealed by analyses of mutant opal and amber suppressor tRNAs. McClain WH; Foss K; Jenkins RA; Schneider J Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9260-4. PubMed ID: 2251270 [TBL] [Abstract][Full Text] [Related]
20. Mutation in the D arm enables a suppressor with a CUA anticodon to read both amber and ochre codons in Escherichia coli. Raftery LA; Bermingham JR; Yarus M J Mol Biol; 1986 Aug; 190(3):513-7. PubMed ID: 2431155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]