These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 9465043)

  • 1. Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence.
    Scheibel T; Weikl T; Buchner J
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1495-9. PubMed ID: 9465043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The charged region of Hsp90 modulates the function of the N-terminal domain.
    Scheibel T; Siegmund HI; Jaenicke R; Ganz P; Lilie H; Buchner J
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1297-302. PubMed ID: 9990018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of the weak ATPase activity of human hsp90 by a client protein.
    McLaughlin SH; Smith HW; Jackson SE
    J Mol Biol; 2002 Jan; 315(4):787-98. PubMed ID: 11812147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unstructured C-terminal region of the Hsp90 co-chaperone p23 is important for its chaperone function.
    Weikl T; Abelmann K; Buchner J
    J Mol Biol; 1999 Oct; 293(3):685-91. PubMed ID: 10543959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the ATP binding properties of Hsp90.
    Jakob U; Scheibel T; Bose S; Reinstein J; Buchner J
    J Biol Chem; 1996 Apr; 271(17):10035-41. PubMed ID: 8626558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis.
    Obermann WM; Sondermann H; Russo AA; Pavletich NP; Hartl FU
    J Cell Biol; 1998 Nov; 143(4):901-10. PubMed ID: 9817749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.
    Donnelly A; Blagg BS
    Curr Med Chem; 2008; 15(26):2702-17. PubMed ID: 18991631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-monomer substrate contacts reposition the Hsp90 N-terminal domain and prime the chaperone activity.
    Street TO; Lavery LA; Verba KA; Lee CT; Mayer MP; Agard DA
    J Mol Biol; 2012 Jan; 415(1):3-15. PubMed ID: 22063096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization.
    Allan RK; Mok D; Ward BK; Ratajczak T
    J Biol Chem; 2006 Mar; 281(11):7161-71. PubMed ID: 16421106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
    Prodromou C; Siligardi G; O'Brien R; Woolfson DN; Regan L; Panaretou B; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1999 Feb; 18(3):754-62. PubMed ID: 9927435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo.
    Panaretou B; Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1998 Aug; 17(16):4829-36. PubMed ID: 9707442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system.
    Brychzy A; Rein T; Winklhofer KF; Hartl FU; Young JC; Obermann WM
    EMBO J; 2003 Jul; 22(14):3613-23. PubMed ID: 12853476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex.
    Ali MM; Roe SM; Vaughan CK; Meyer P; Panaretou B; Piper PW; Prodromou C; Pearl LH
    Nature; 2006 Apr; 440(7087):1013-7. PubMed ID: 16625188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site.
    Soti C; Vermes A; Haystead TA; Csermely P
    Eur J Biochem; 2003 Jun; 270(11):2421-8. PubMed ID: 12755697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23.
    Young JC; Hartl FU
    EMBO J; 2000 Nov; 19(21):5930-40. PubMed ID: 11060043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and mechanism of the Hsp90 molecular chaperone machinery.
    Pearl LH; Prodromou C
    Annu Rev Biochem; 2006; 75():271-94. PubMed ID: 16756493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro evidence that hsp90 contains two independent chaperone sites.
    Young JC; Schneider C; Hartl FU
    FEBS Lett; 1997 Nov; 418(1-2):139-43. PubMed ID: 9414113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Hsp70-Hsp90 Chaperone Cascade in Protein Folding.
    Morán Luengo T; Mayer MP; Rüdiger SGD
    Trends Cell Biol; 2019 Feb; 29(2):164-177. PubMed ID: 30502916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90.
    Itoh H; Ogura M; Komatsuda A; Wakui H; Miura AB; Tashima Y
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):697-703. PubMed ID: 10527951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation.
    Mercier R; Wolmarans A; Schubert J; Neuweiler H; Johnson JL; LaPointe P
    Nat Commun; 2019 Mar; 10(1):1273. PubMed ID: 30894538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.