BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 9465057)

  • 1. The variable domain of nonassembled Ig light chains determines both their half-life and binding to the chaperone BiP.
    Skowronek MH; Hendershot LM; Haas IG
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1574-8. PubMed ID: 9465057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum.
    Knittler MR; Dirks S; Haas IG
    Proc Natl Acad Sci U S A; 1995 Feb; 92(5):1764-8. PubMed ID: 7878056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly.
    Lee YK; Brewer JW; Hellman R; Hendershot LM
    Mol Biol Cell; 1999 Jul; 10(7):2209-19. PubMed ID: 10397760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the major interaction between binding protein and Ig light chains to sites within the variable domain.
    Davis DP; Khurana R; Meredith S; Stevens FJ; Argon Y
    J Immunol; 1999 Oct; 163(7):3842-50. PubMed ID: 10490983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas.
    Bole DG; Hendershot LM; Kearney JF
    J Cell Biol; 1986 May; 102(5):1558-66. PubMed ID: 3084497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunoglobulin heavy chain and binding protein complexes are dissociated in vivo by light chain addition.
    Hendershot LM
    J Cell Biol; 1990 Sep; 111(3):829-37. PubMed ID: 2118144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The in vivo association of BiP with newly synthesized proteins is dependent on the rate and stability of folding and not simply on the presence of sequences that can bind to BiP.
    Hellman R; Vanhove M; Lejeune A; Stevens FJ; Hendershot LM
    J Cell Biol; 1999 Jan; 144(1):21-30. PubMed ID: 9885241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of transport-defective light chains with immunoglobulin heavy chain binding protein.
    Ma J; Kearney JF; Hendershot LM
    Mol Immunol; 1990 Jul; 27(7):623-30. PubMed ID: 2118593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation from BiP and retrotranslocation of unassembled immunoglobulin light chains are tightly coupled to proteasome activity.
    Chillarón J; Haas IG
    Mol Biol Cell; 2000 Jan; 11(1):217-26. PubMed ID: 10637303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unassembled Ig heavy chains do not cycle from BiP in vivo but require light chains to trigger their release.
    Vanhove M; Usherwood YK; Hendershot LM
    Immunity; 2001 Jul; 15(1):105-14. PubMed ID: 11485742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein.
    Hendershot L; Bole D; Köhler G; Kearney JF
    J Cell Biol; 1987 Mar; 104(3):761-7. PubMed ID: 3102505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release.
    Knittler MR; Haas IG
    EMBO J; 1992 Apr; 11(4):1573-81. PubMed ID: 1563355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of immunoglobulin light chains as a prerequisite for secretion. A model for oligomerization-dependent subunit folding.
    Leitzgen K; Knittler MR; Haas IG
    J Biol Chem; 1997 Jan; 272(5):3117-23. PubMed ID: 9006964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of immunoglobulin folding and secretion by dominant negative BiP ATPase mutants.
    Hendershot L; Wei J; Gaut J; Melnick J; Aviel S; Argon Y
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5269-74. PubMed ID: 8643565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum.
    Melnick J; Dul JL; Argon Y
    Nature; 1994 Aug; 370(6488):373-5. PubMed ID: 7913987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded substrates.
    Shen Y; Hendershot LM
    Mol Biol Cell; 2005 Jan; 16(1):40-50. PubMed ID: 15525676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of the BiP-retention domain in Cmicro permits surface deposition and developmental progression without L-chain.
    Zou X; Smith JA; Corcos D; Matheson LS; Osborn MJ; Brüggemann M
    Mol Immunol; 2008 Aug; 45(13):3573-9. PubMed ID: 18584871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo expression of mammalian BiP ATPase mutants causes disruption of the endoplasmic reticulum.
    Hendershot LM; Wei JY; Gaut JR; Lawson B; Freiden PJ; Murti KG
    Mol Biol Cell; 1995 Mar; 6(3):283-96. PubMed ID: 7612964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ER-resident chaperone interactions with recombinant antibodies in transgenic plants.
    Nuttall J; Vine N; Hadlington JL; Drake P; Frigerio L; Ma JK
    Eur J Biochem; 2002 Dec; 269(24):6042-51. PubMed ID: 12473100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BiP binding sequences in antibodies.
    Knarr G; Gething MJ; Modrow S; Buchner J
    J Biol Chem; 1995 Nov; 270(46):27589-94. PubMed ID: 7499221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.