These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9466339)

  • 1. Change of the microstructure of microcrystalline cellulose with grinding and compression.
    Yamamura S; Terada K; Momose Y
    J Pharm Pharmacol; 1997 Dec; 49(12):1178-81. PubMed ID: 9466339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of compressional force on the crystallinity of directly compressible cellulose excipients.
    Kumar V; Kothari SH
    Int J Pharm; 1999 Jan; 177(2):173-82. PubMed ID: 10205612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An effect of cellulose crystallinity on the moisture absorbability of a pharmaceutical tablet studied by near-infrared spectroscopy.
    Awa K; Shinzawa H; Ozaki Y
    Appl Spectrosc; 2014; 68(6):625-32. PubMed ID: 25014717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose.
    De Figueiredo LP; Ferreira FF
    J Pharm Sci; 2014 May; 103(5):1394-9. PubMed ID: 24590572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of microcrystalline cellulose based comilled powder on the compression and dissolution of ibuprofen.
    Mallick S; Pradhan SK; Mohapatra R
    Int J Biol Macromol; 2013 Sep; 60():148-55. PubMed ID: 23732329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional performance of silicified microcrystalline cellulose versus microcrystalline cellulose: a case study.
    Aljaberi A; Chatterji A; Shah NH; Sandhu HK
    Drug Dev Ind Pharm; 2009 Sep; 35(9):1066-71. PubMed ID: 19353418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of two commercial brands of microcrystalline cellulose for extrusion-spheronization.
    Law MF; Deasy PB; McLaughlin JP; Gabriel S
    J Microencapsul; 1997; 14(6):713-23. PubMed ID: 9394252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns.
    Bates S; Zografi G; Engers D; Morris K; Crowley K; Newman A
    Pharm Res; 2006 Oct; 23(10):2333-49. PubMed ID: 17021963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical evaluation of the capping tendency of microcrystalline cellulose tablets during a diametrical compression test.
    Furukawa R; Chen Y; Horiguchi A; Takagaki K; Nishi J; Konishi A; Shirakawa Y; Sugimoto M; Narisawa S
    Int J Pharm; 2015 Sep; 493(1-2):182-91. PubMed ID: 26188313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the crystallinity of cephalexin in pharmaceutical formulations by chemometrical near-infrared spectroscopy.
    Fukui Y; Otsuka M
    Drug Dev Ind Pharm; 2010 Jan; 36(1):72-80. PubMed ID: 19656006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of rapidly disintegrating tablet using new types of microcrystalline cellulose (PH-M series) and low substituted-hydroxypropylcellulose or spherical sugar granules by direct compression method.
    Ishikawa T; Mukai B; Shiraishi S; Utoguchi N; Fujii M; Matsumoto M; Watanabe Y
    Chem Pharm Bull (Tokyo); 2001 Feb; 49(2):134-9. PubMed ID: 11217097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose.
    Haafiz MK; Hassan A; Zakaria Z; Inuwa IM
    Carbohydr Polym; 2014 Mar; 103():119-25. PubMed ID: 24528708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural changes in microcrystalline cellulose in subcritical water treatment.
    Tolonen LK; Zuckerstätter G; Penttilä PA; Milacher W; Habicht W; Serimaa R; Kruse A; Sixta H
    Biomacromolecules; 2011 Jul; 12(7):2544-51. PubMed ID: 21644577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization.
    Shlieout G; Arnold K; Müller G
    AAPS PharmSciTech; 2002; 3(2):E11. PubMed ID: 12916948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roller compaction of different pseudopolymorphic forms of theophylline: Effect on compressibility and tablet properties.
    Hadzović E; Betz G; Hadzidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2010 Aug; 396(1-2):53-62. PubMed ID: 20600735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in the mechanical strength of dried microcrystalline cellulose pellets are not due to significant changes in the degree of hydrogen bonding.
    Millili GP; Wigent RJ; Schwartz JB
    Pharm Dev Technol; 1996 Oct; 1(3):239-49. PubMed ID: 9552306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of surface-engineered coarse microcrystalline cellulose through dry coating with silica nanoparticles.
    Zhou Q; Shi L; Chattoraj S; Sun CC
    J Pharm Sci; 2012 Nov; 101(11):4258-66. PubMed ID: 22927169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose.
    Kondo T; Koschella A; Heublein B; Klemm D; Heinze T
    Carbohydr Res; 2008 Oct; 343(15):2600-4. PubMed ID: 18635159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depolymerization of microcrystalline cellulose by the combination of ultrasound and Fenton reagent.
    Zhang MF; Qin YH; Ma JY; Yang L; Wu ZK; Wang TL; Wang WG; Wang CW
    Ultrason Sonochem; 2016 Jul; 31():404-8. PubMed ID: 26964965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compaction simulator studies of a new drug substance: effect of particle size and shape, and its binary mixtures with microcrystalline cellulose.
    Celik M; Ong JT; Chowhan ZT; Samuel GJ
    Pharm Dev Technol; 1996 Jul; 1(2):119-26. PubMed ID: 9552338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.