These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9466705)

  • 1. Chronic blockade of glutamate-mediated bioelectric activity in long-term organotypic neocortical explants differentially effects pyramidal/non-pyramidal dendritic morphology.
    Baker RE; Wolters P; van Pelt J
    Brain Res Dev Brain Res; 1997 Dec; 104(1-2):31-9. PubMed ID: 9466705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of pyramidal, but not non-pyramidal, dendrites in long-term organotypic explants of neonatal rat neocortex chronically exposed to neurotrophin-3.
    Baker RE; Dijkhuizen PA; Van Pelt J; Verhaagen J
    Eur J Neurosci; 1998 Mar; 10(3):1037-44. PubMed ID: 9753171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cocultured, but not isolated, cortical explants display normal dendritic development: a long-term quantitative study.
    Baker RE; Van Pelt J
    Brain Res Dev Brain Res; 1997 Jan; 98(1):21-9. PubMed ID: 9027401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks--an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny.
    Corner MA; van Pelt J; Wolters PS; Baker RE; Nuytinck RH
    Neurosci Biobehav Rev; 2002 Mar; 26(2):127-85. PubMed ID: 11856557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type I TARPs promote dendritic growth of early postnatal neocortical pyramidal cells in organotypic cultures.
    Hamad MI; Jack A; Klatt O; Lorkowski M; Strasdeit T; Kott S; Sager C; Hollmann M; Wahle P
    Development; 2014 Apr; 141(8):1737-48. PubMed ID: 24667327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homeostatically regulated spontaneous neuronal discharges protect developing cerebral cortex networks from becoming hyperactive following prolonged blockade of excitatory synaptic receptors.
    Corner MA; Baker RE; van Pelt J
    Brain Res; 2006 Aug; 1106(1):40-45. PubMed ID: 16836981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex.
    Markram H; Lübke J; Frotscher M; Roth A; Sakmann B
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):409-40. PubMed ID: 9147328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices.
    Pozzo-Miller LD; Inoue T; Murphy DD
    J Neurophysiol; 1999 Mar; 81(3):1404-11. PubMed ID: 10085365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-dependent regulation of dendritic spine density on cortical pyramidal neurons in organotypic slice cultures.
    Annis CM; O'Dowd DK; Robertson RT
    J Neurobiol; 1994 Dec; 25(12):1483-93. PubMed ID: 7861113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors determining the efficacy of distal excitatory synapses in rat hippocampal CA1 pyramidal neurones.
    Andreasen M; Lambert JD
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):441-62. PubMed ID: 9518704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BDNF enhances dendritic Ca2+ signals evoked by coincident EPSPs and back-propagating action potentials in CA1 pyramidal neurons.
    Pozzo-Miller L
    Brain Res; 2006 Aug; 1104(1):45-54. PubMed ID: 16797499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compensatory physiological responses to chronic blockade of amino acid receptors during early development in spontaneously active organotypic cerebral cortex explants cultured in vitro.
    Corner MA; Baker RE; van Pelt J; Wolters PS
    Prog Brain Res; 2005; 147():231-48. PubMed ID: 15581710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action potential initiation and propagation in rat neocortical pyramidal neurons.
    Stuart G; Schiller J; Sakmann B
    J Physiol; 1997 Dec; 505 ( Pt 3)(Pt 3):617-32. PubMed ID: 9457640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate-induced increases in intracellular Ca2+ in cultured rat neocortical neurons.
    Wang G; Ding S; Yunokuchi K
    Neuroreport; 2002 Jun; 13(8):1051-6. PubMed ID: 12060807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites.
    Zhu JJ
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):571-87. PubMed ID: 10922009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns.
    Larkman AU
    J Comp Neurol; 1991 Apr; 306(2):307-19. PubMed ID: 1711057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spine loss in experimental epilepsy: quantitative light and electron microscopic analysis of intracellularly stained CA3 pyramidal cells in hippocampal slice cultures.
    Drakew A; Müller M; Gähwiler BH; Thompson SM; Frotscher M
    Neuroscience; 1996 Jan; 70(1):31-45. PubMed ID: 8848134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells.
    Lipowsky R; Gillessen T; Alzheimer C
    J Neurophysiol; 1996 Oct; 76(4):2181-91. PubMed ID: 8899593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-dependent development of spontaneous bioelectric activity in organotypic cultures of rat occipital cortex.
    Echevarría D; Albus K
    Brain Res Dev Brain Res; 2000 Oct; 123(2):151-64. PubMed ID: 11042344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal treatment with 192 IgG-saporin produces long-term forebrain cholinergic deficits and reduces dendritic branching and spine density of neocortical pyramidal neurons.
    Robertson RT; Gallardo KA; Claytor KJ; Ha DH; Ku KH; Yu BP; Lauterborn JC; Wiley RG; Yu J; Gall CM; Leslie FM
    Cereb Cortex; 1998 Mar; 8(2):142-55. PubMed ID: 9542893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.