BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9466709)

  • 1. Diffusible factors produced by cultured neural retinal cells enhance in vitro differentiation of pineal cone photoreceptors of developing quail embryos.
    Araki M
    Brain Res Dev Brain Res; 1997 Dec; 104(1-2):71-8. PubMed ID: 9466709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of both rod and cone types of photoreceptors in the in vivo and in vitro developing pineal glands of the quail.
    Araki M; Fukada Y; Shichida Y; Yoshizawa T; Tokunaga F
    Brain Res Dev Brain Res; 1992 Jan; 65(1):85-92. PubMed ID: 1348019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of pinopsin-immunoreactive cells in the developing quail pineal organ: an in-vivo and in-vitro immunohistochemical study.
    Yamao M; Araki M; Okano T; Fukada Y; Oishi T
    Cell Tissue Res; 1999 Jun; 296(3):667-71. PubMed ID: 10370152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential enhancement of neural and photoreceptor cell differentiation of cultured pineal cells by FGF-1, IGF-1, and EGF.
    Araki M; Suzuki H; Layer P
    Dev Neurobiol; 2007 Oct; 67(12):1641-54. PubMed ID: 17577207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphometric analysis of photoreceptive, neuronal and endocrinal cell differentiation of avian pineal cells: an in vitro immunohistochemical study on the developmental transition from neuronal to photo-endocrinal property.
    Haldar C; Araki M
    Zoolog Sci; 2002 Jul; 19(7):781-7. PubMed ID: 12149579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal differentiation from multipotential pineal cells of the embryonic quail.
    Araki M; Kodama R; Eguchi G; Yasujima M; Orii H; Watanabe K
    Neurosci Res; 1993 Oct; 18(1):63-72. PubMed ID: 8134021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of iodopsin in the chick retina during in vivo and in vitro cone differentiation.
    Araki M; Fukada Y; Shichida Y; Yoshizawa T
    Invest Ophthalmol Vis Sci; 1990 Aug; 31(8):1466-73. PubMed ID: 2201661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunocytochemical markers revealing retinal and pineal but not hypothalamic photoreceptor systems in the Japanese quail.
    Foster RG; Korf HW; Schalken JJ
    Cell Tissue Res; 1987 Apr; 248(1):161-7. PubMed ID: 2952278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial characterization of retina-derived cone neuroprotection in two culture models of photoreceptor degeneration.
    Fintz AC; Audo I; Hicks D; Mohand-Said S; Léveillard T; Sahel J
    Invest Ophthalmol Vis Sci; 2003 Feb; 44(2):818-25. PubMed ID: 12556418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular mechanism for norepinephrine suppression of pineal photoreceptor-like cell differentiation in rat pineal cultures.
    Araki M
    Dev Biol; 1992 Feb; 149(2):440-7. PubMed ID: 1730393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pineal organ is the first differentiated light receptor in the embryonic salmon, Salmo salar L.
    Ostholm T; Brännäs E; van Veen T
    Cell Tissue Res; 1987 Sep; 249(3):641-6. PubMed ID: 2959366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early development of the pineal photoreceptors prior to the retinal differentiation in the embryonic rainbow trout, Oncorhynchus mykiss (Teleostei).
    Omura Y; Oguri M
    Arch Histol Cytol; 1993 Aug; 56(3):283-91. PubMed ID: 8240856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual pigments in the pineal complex of the Japanese quail, Japanese grass lizard and bullfrog: immunocytochemistry and HPLC analysis.
    Masuda H; Oishi T; Ohtani M; Michinomae M; Fukada Y; Shichida Y; Yoshizawa T
    Tissue Cell; 1994 Feb; 26(1):101-13. PubMed ID: 8171418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonvisual photoreceptors of the deep brain, pineal organs and retina.
    Vigh B; Manzano MJ; Zádori A; Frank CL; Lukáts A; Röhlich P; Szél A; Dávid C
    Histol Histopathol; 2002 Apr; 17(2):555-90. PubMed ID: 11962759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pineal and retinal photoreceptors in embryonic Rivulus marmoratus poey.
    Ali MA; Klyne MA; Park EH; Lee SH
    Anat Anz; 1988; 167(5):359-69. PubMed ID: 3232845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oculopotency of embryonic quail pineals as revealed by cell culture studies.
    Watanabe K; Aoyama H; Tamamaki N; Yasujima M; Nojyo Y; Ueda Y; Okada TS
    Cell Differ; 1985 Jun; 16(4):251-7. PubMed ID: 4016958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three types of photoreceptors in the pineal and frontal organs of frogs: ultrastructure and opsin immunoreactivity.
    Vigh B; Vigh-Teichmann I
    Arch Histol Jpn; 1986 Dec; 49(5):495-518. PubMed ID: 3551870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early development of the retina and pineal complex in the sea lamprey: comparative immunocytochemical study.
    Meléndez-Ferro M; Villar-Cheda B; Abalo XM; Pérez-Costas E; Rodríguez-Muñoz R; Degrip WJ; Yáñez J; Rodicio MC; Anadón R
    J Comp Neurol; 2002 Jan; 442(3):250-65. PubMed ID: 11774340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of gonadal steroids on pineal morphogenesis and cell differentiation of the embryonic quail studied under cell culture conditions.
    Haldar C; Fukada Y; Araki M
    Brain Res Dev Brain Res; 2003 Oct; 145(1):71-9. PubMed ID: 14519495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian regulation of iodopsin gene expression in embryonic photoreceptors in retinal cell culture.
    Pierce ME; Sheshberadaran H; Zhang Z; Fox LE; Applebury ML; Takahashi JS
    Neuron; 1993 Apr; 10(4):579-84. PubMed ID: 8476610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.