These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 9466813)

  • 1. Differential expression of genes associated with collagen fibril growth in the chicken tendon: identification of structural and regulatory genes by subtractive hybridization.
    Nurminskaya MV; Birk DE
    Arch Biochem Biophys; 1998 Feb; 350(1):1-9. PubMed ID: 9466813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of tendon structure and function: regulation of collagen fibrillogenesis.
    Zhang G; Young BB; Ezura Y; Favata M; Soslowsky LJ; Chakravarti S; Birk DE
    J Musculoskelet Neuronal Interact; 2005 Mar; 5(1):5-21. PubMed ID: 15788867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development.
    Birk DE; Nurminskaya MV; Zycband EI
    Dev Dyn; 1995 Mar; 202(3):229-43. PubMed ID: 7780173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of fibromodulin mRNA associated with tendon fibril growth: isolation and characterization of a chicken fibromodulin cDNA.
    Nurminskaya MV; Birk DE
    Biochem J; 1996 Aug; 317 ( Pt 3)(Pt 3):785-9. PubMed ID: 8760363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of type XIV collagen in developing chicken tendons: association with assembly and growth of collagen fibrils.
    Young BB; Gordon MK; Birk DE
    Dev Dyn; 2000 Apr; 217(4):430-9. PubMed ID: 10767087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures.
    Birk DE; Zycband EI; Woodruff S; Winkelmann DA; Trelstad RL
    Dev Dyn; 1997 Mar; 208(3):291-8. PubMed ID: 9056634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deficiency of tenascin-X causes a decrease in the level of expression of type VI collagen.
    Minamitani T; Ariga H; Matsumoto K
    Exp Cell Res; 2004 Jul; 297(1):49-60. PubMed ID: 15194424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of heat shock protein 47 and type I procollagen expression in avian tendon cells.
    Pan H; Halper J
    Cell Tissue Res; 2003 Mar; 311(3):373-82. PubMed ID: 12658445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of interleukin-10 on the gene expression of type I collagen, fibronectin, and decorin in human skin fibroblasts: differential regulation by transforming growth factor-beta and monocyte chemoattractant protein-1.
    Yamamoto T; Eckes B; Krieg T
    Biochem Biophys Res Commun; 2001 Feb; 281(1):200-5. PubMed ID: 11178980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression profiling by DNA microarray analysis in mouse embryonic fibroblasts transformed by rasV12 mutated protein and the E1A oncogene.
    Vasseur S; Malicet C; Calvo EL; Labrie C; Berthezene P; Dagorn JC; Iovanna JL
    Mol Cancer; 2003 Mar; 2():19. PubMed ID: 12685932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen fibrils forming in developing tendon show an early and abrupt limitation in diameter at the growing tips.
    Holmes DF; Graham HK; Kadler KE
    J Mol Biol; 1998 Nov; 283(5):1049-58. PubMed ID: 9799643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction.
    Graham HK; Holmes DF; Watson RB; Kadler KE
    J Mol Biol; 2000 Jan; 295(4):891-902. PubMed ID: 10656798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of novel and known genes from a human fetal cochlear cDNA library using subtractive hybridization and differential screening.
    Robertson NG; Khetarpal U; GutiƩrrez-Espeleta GA; Bieber FR; Morton CC
    Genomics; 1994 Sep; 23(1):42-50. PubMed ID: 7829101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGF-beta1 generates a specific multicomponent extracellular matrix in human coronary SMC.
    Schmidt A; Lorkowski S; Seidler D; Breithardt G; Buddecke E
    Eur J Clin Invest; 2006 Jul; 36(7):473-82. PubMed ID: 16796604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen, type V, alpha1 (COL5A1) is regulated by TGF-beta in osteoblasts.
    Kahai S; Vary CP; Gao Y; Seth A
    Matrix Biol; 2004 Nov; 23(7):445-55. PubMed ID: 15579311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter.
    Birk DE; Mayne R
    Eur J Cell Biol; 1997 Apr; 72(4):352-61. PubMed ID: 9127735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of up-regulated genes during chondrocyte hypertrophy.
    Nurminskaya M; Linsenmayer TF
    Dev Dyn; 1996 Jul; 206(3):260-71. PubMed ID: 8896982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential gene expression in quiescent human lung fibroblasts.
    Coppock DL; Kopman C; Scandalis S; Gilleran S
    Cell Growth Differ; 1993 Jun; 4(6):483-93. PubMed ID: 8396966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential gene expression in apoptosis: identification of ribosomal protein S29 as an apoptotic inducer.
    Khanna N; Reddy VG; Tuteja N; Singh N
    Biochem Biophys Res Commun; 2000 Oct; 277(2):476-86. PubMed ID: 11032747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.