BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 9466891)

  • 1. A study of the potential of the embryonic rat telencephalon to generate oligodendrocytes.
    Birling MC; Price J
    Dev Biol; 1998 Jan; 193(1):100-13. PubMed ID: 9466891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The generation of cellular diversity in the cerebral cortex.
    Price J; Williams B; Grove E
    Brain Pathol; 1992 Jan; 2(1):23-9. PubMed ID: 1341944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the existence of at least two timing mechanisms that contribute to oligodendrocyte generation in vitro.
    Ibarrola N; Mayer-Pröschel M; Rodriguez-Peña A; Noble M
    Dev Biol; 1996 Nov; 180(1):1-21. PubMed ID: 8948570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions.
    Power J; Mayer-Pröschel M; Smith J; Noble M
    Dev Biol; 2002 May; 245(2):362-75. PubMed ID: 11977987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precursor cell types in the germinal zone of the cerebral cortex.
    Williams BP
    Bioessays; 1995 May; 17(5):391-3. PubMed ID: 7786284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient induction of oligodendrocytes from human embryonic stem cells.
    Kang SM; Cho MS; Seo H; Yoon CJ; Oh SK; Choi YM; Kim DW
    Stem Cells; 2007 Feb; 25(2):419-24. PubMed ID: 17053214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential for circuit reconstruction by expanded neural precursor cells explored through porcine xenografts in a rat model of Parkinson's disease.
    Armstrong RJ; Hurelbrink CB; Tyers P; Ratcliffe EL; Richards A; Dunnett SB; Rosser AE; Barker RA
    Exp Neurol; 2002 May; 175(1):98-111. PubMed ID: 12009763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential generation of oligodendrocytes from human and rodent embryonic spinal cord neural precursors.
    Chandran S; Compston A; Jauniaux E; Gilson J; Blakemore W; Svendsen C
    Glia; 2004 Sep; 47(4):314-24. PubMed ID: 15293229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial cell lineages in the rat cerebral cortex.
    Parnavelas JG
    Exp Neurol; 1999 Apr; 156(2):418-29. PubMed ID: 10328946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic fibroblast growth factor endows dorsal telencephalic neural progenitors with the ability to differentiate into oligodendrocytes but not gamma-aminobutyric acidergic neurons.
    Abematsu M; Kagawa T; Fukuda S; Inoue T; Takebayashi H; Komiya S; Taga T
    J Neurosci Res; 2006 Apr; 83(5):731-43. PubMed ID: 16496354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A self-renewing multipotential stem cell in embryonic rat cerebral cortex.
    Davis AA; Temple S
    Nature; 1994 Nov; 372(6503):263-6. PubMed ID: 7969470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations.
    Nery S; Fishell G; Corbin JG
    Nat Neurosci; 2002 Dec; 5(12):1279-87. PubMed ID: 12411960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of oligodendrocytes in neurospheres derived from embryonic rat brain using growth and differentiation factors.
    Gibney SM; McDermott KW
    J Neurosci Res; 2007 Jul; 85(9):1912-20. PubMed ID: 17526011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum.
    Darsalia V; Kallur T; Kokaia Z
    Eur J Neurosci; 2007 Aug; 26(3):605-14. PubMed ID: 17686040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats.
    Kallur T; Darsalia V; Lindvall O; Kokaia Z
    J Neurosci Res; 2006 Dec; 84(8):1630-44. PubMed ID: 17044030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GFP-transgenic Lewis rats as a cell source for oligodendrocyte replacement.
    Francis JS; Olariu A; Kobayashi E; Leone P
    Exp Neurol; 2007 May; 205(1):177-89. PubMed ID: 17382931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Region-specific growth properties and trophic requirements of brain- and spinal cord-derived rat embryonic neural precursor cells.
    Fu SL; Ma ZW; Yin L; Iannotti C; Lu PH; Xu XM
    Neuroscience; 2005; 135(3):851-62. PubMed ID: 16213987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a second wave of oligodendrogenesis in the postnatal cerebral cortex of the mouse.
    Ivanova A; Nakahira E; Kagawa T; Oba A; Wada T; Takebayashi H; Spassky N; Levine J; Zalc B; Ikenaka K
    J Neurosci Res; 2003 Sep; 73(5):581-92. PubMed ID: 12929126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligodendrocyte precursor cells generate pituicytes in vivo during neurohypophysis development.
    Virard I; Coquillat D; Bancila M; Kaing S; Durbec P
    Glia; 2006 Feb; 53(3):294-303. PubMed ID: 16265670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NG2-positive cells generate A2B5-positive oligodendrocyte precursor cells.
    Baracskay KL; Kidd GJ; Miller RH; Trapp BD
    Glia; 2007 Aug; 55(10):1001-10. PubMed ID: 17503442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.