These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 9466918)

  • 21. Unexpected formation of parallel duplex in GAA and TTC trinucleotide repeats of Friedreich's ataxia.
    LeProust EM; Pearson CE; Sinden RR; Gao X
    J Mol Biol; 2000 Oct; 302(5):1063-80. PubMed ID: 11183775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expansion of CTG repeats from human disease genes is dependent upon replication mechanisms in Escherichia coli: the effect of long patch mismatch repair revisited.
    Schumacher S; Fuchs RP; Bichara M
    J Mol Biol; 1998 Jun; 279(5):1101-10. PubMed ID: 9642087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slipped structures in DNA triplet repeat sequences: entropic contributions to genetic instabilities.
    Harvey SC
    Biochemistry; 1997 Mar; 36(11):3047-9. PubMed ID: 9115978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DM2 CCTG*CAGG repeats are crossover hotspots that are more prone to expansions than the DM1 CTG*CAG repeats in Escherichia coli.
    Dere R; Wells RD
    J Mol Biol; 2006 Jun; 360(1):21-36. PubMed ID: 16753177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers.
    Paiva AM; Sheardy RD
    Biochemistry; 2004 Nov; 43(44):14218-27. PubMed ID: 15518572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
    Völker J; Makube N; Plum GE; Klump HH; Breslauer KJ
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14700-5. PubMed ID: 12417759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanisms for maintenance of G-rich short tandem repeats capable of adopting G4 DNA structures.
    Nakagama H; Higuchi K; Tanaka E; Tsuchiya N; Nakashima K; Katahira M; Fukuda H
    Mutat Res; 2006 Jun; 598(1-2):120-31. PubMed ID: 16513142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CAG/CTG and CGG/GCC repeats in human brain reference cDNAs: outcome in searching for new dynamic mutations.
    Albanese V; Holbert S; Saada C; Meier-Ewert S; Lebre AS; Moriniere S; Bougueleret L; Le Gall I; Weissenbach J; Lennon G; Lehrach H; Cohen D; Cann HM; Neri C
    Genomics; 1998 Feb; 47(3):414-8. PubMed ID: 9480757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study.
    Zheng M; Huang X; Smith GK; Yang X; Gao X
    J Mol Biol; 1996 Nov; 264(2):323-36. PubMed ID: 8951379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics studies of trinucleotide repeat DNA involved in neurodegenerative disorders.
    Jithesh PV; Singh P; Joshi R
    J Biomol Struct Dyn; 2001 Dec; 19(3):479-95. PubMed ID: 11790146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical modifiers of unstable expanded simple sequence repeats: what goes up, could come down.
    Gomes-Pereira M; Monckton DG
    Mutat Res; 2006 Jun; 598(1-2):15-34. PubMed ID: 16500684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanisms of TRS instability.
    Parniewski P; Staczek P
    Adv Exp Med Biol; 2002; 516():1-25. PubMed ID: 12611433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a screening set for new (CAG/CTG)n dynamic mutations.
    Gastier JM; Brody T; Pulido JC; Businga T; Sunden S; Hu X; Maitra S; Buetow KH; Murray JC; Sheffield VC; Boguski M; Duyk GM; Hudson TJ
    Genomics; 1996 Feb; 32(1):75-85. PubMed ID: 8786123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis for triplet repeat disorders: a computational analysis.
    Baldi P; Brunak S; Chauvin Y; Pedersen AG
    Bioinformatics; 1999 Nov; 15(11):918-29. PubMed ID: 10743558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA.
    Pearson CE; Sinden RR
    Curr Opin Struct Biol; 1998 Jun; 8(3):321-30. PubMed ID: 9666328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of DNA replication by a d(CAG) repeat binding ligand.
    Hagihara M; Nakatani K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):147-8. PubMed ID: 17150860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SOS repair and DNA supercoiling influence the genetic stability of DNA triplet repeats in Escherichia coli.
    Majchrzak M; Bowater RP; Staczek P; Parniewski P
    J Mol Biol; 2006 Dec; 364(4):612-24. PubMed ID: 17028021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Small-molecule ligand induces nucleotide flipping in (CAG)n trinucleotide repeats.
    Nakatani K; Hagihara S; Goto Y; Kobori A; Hagihara M; Hayashi G; Kyo M; Nomura M; Mishima M; Kojima C
    Nat Chem Biol; 2005 Jun; 1(1):39-43. PubMed ID: 16407992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myotonic dystrophies.
    Huang CC; Kuo HC
    Chang Gung Med J; 2005 Aug; 28(8):517-26. PubMed ID: 16265841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trinucleotide repeats affect DNA replication in vivo.
    Samadashwily GM; Raca G; Mirkin SM
    Nat Genet; 1997 Nov; 17(3):298-304. PubMed ID: 9354793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.