These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 9466930)
1. Position-specific inhibition of yeast mitochondrial transcription by a poly(T) sequence. Biswas TK; Getz GS J Mol Biol; 1998 Jan; 275(4):547-60. PubMed ID: 9466930 [TBL] [Abstract][Full Text] [Related]
2. Nucleotide sequences surrounding the nonanucleotide promoter motif influence the activity of yeast mitochondrial promoter. Biswas TK Biochemistry; 1999 Jul; 38(30):9693-703. PubMed ID: 10423248 [TBL] [Abstract][Full Text] [Related]
3. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex. Schröder O; Wagner R J Mol Biol; 2000 May; 298(5):737-48. PubMed ID: 10801345 [TBL] [Abstract][Full Text] [Related]
4. Unusual usage of noncomplementary dinucleotide primers by the yeast mitochondrial RNA polymerase. Biswas TK Arch Biochem Biophys; 1997 Apr; 340(2):250-6. PubMed ID: 9143328 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial upstream promoter sequences modulate in vivo the transcription of a gene in yeast mitochondria. Pfeuty A; Dufresne C; Gueride M; Lecellier G Mitochondrion; 2006 Dec; 6(6):289-98. PubMed ID: 17110175 [TBL] [Abstract][Full Text] [Related]
6. A region of the cellobiohydrolase I promoter from the filamentous fungus Trichoderma reesei mediates glucose repression in Saccharomyces cerevisiae, dependent on mitochondrial activity. Carraro DM; Ferreira Júnior JR; Schumacher R; Pereira GG; Hollenberg CP; El-Dorry H Biochem Biophys Res Commun; 1998 Dec; 253(2):407-14. PubMed ID: 9878550 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Z-DNA as a nucleosome-boundary element in yeast Saccharomyces cerevisiae. Wong B; Chen S; Kwon JA; Rich A Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2229-34. PubMed ID: 17284586 [TBL] [Abstract][Full Text] [Related]
8. Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Thiebaut M; Colin J; Neil H; Jacquier A; Séraphin B; Lacroute F; Libri D Mol Cell; 2008 Sep; 31(5):671-82. PubMed ID: 18775327 [TBL] [Abstract][Full Text] [Related]
9. Rate of promoter class turn-over in yeast evolution. Bazykin GA; Kondrashov AS BMC Evol Biol; 2006 Feb; 6():14. PubMed ID: 16472383 [TBL] [Abstract][Full Text] [Related]
10. Analysis of transcription of the Staphylococcus aureus aerobic class Ib and anaerobic class III ribonucleotide reductase genes in response to oxygen. Masalha M; Borovok I; Schreiber R; Aharonowitz Y; Cohen G J Bacteriol; 2001 Dec; 183(24):7260-72. PubMed ID: 11717286 [TBL] [Abstract][Full Text] [Related]
11. Expression of human ANT2 gene in highly proliferative cells: GRBOX, a new transcriptional element, is involved in the regulation of glycolytic ATP import into mitochondria. Giraud S; Bonod-Bidaud C; Wesolowski-Louvel M; Stepien G J Mol Biol; 1998 Aug; 281(3):409-18. PubMed ID: 9698557 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial transcription is regulated via an ATP "sensing" mechanism that couples RNA abundance to respiration. Amiott EA; Jaehning JA Mol Cell; 2006 May; 22(3):329-38. PubMed ID: 16678105 [TBL] [Abstract][Full Text] [Related]
13. Gene loops juxtapose promoters and terminators in yeast. O'Sullivan JM; Tan-Wong SM; Morillon A; Lee B; Coles J; Mellor J; Proudfoot NJ Nat Genet; 2004 Sep; 36(9):1014-8. PubMed ID: 15314641 [TBL] [Abstract][Full Text] [Related]
14. [Determination of functional role of nucleotide composition in the transcription start region of the Escherichia coli udp gene]. Ovcharova IV; Eremina SIu; Mironov AS Genetika; 2003 Mar; 39(3):326-35. PubMed ID: 12722631 [TBL] [Abstract][Full Text] [Related]
15. Cat8 and Sip4 mediate regulated transcriptional activation of the yeast malate dehydrogenase gene MDH2 by three carbon source-responsive promoter elements. Roth S; Schüller HJ Yeast; 2001 Jan; 18(2):151-62. PubMed ID: 11169757 [TBL] [Abstract][Full Text] [Related]
16. Transcription initiation and RNA processing in the mitochondria of the red alga Chondrus crispus: convergence in the evolution of transcription mechanisms in mitochondria. Richard O; Bonnard G; Grienenberger JM; Kloareg B; Boyen C J Mol Biol; 1998 Oct; 283(3):549-57. PubMed ID: 9784365 [TBL] [Abstract][Full Text] [Related]
17. Mapping the conformation of the nucleic acid framework of the T7 RNA polymerase elongation complex in solution using low-energy CD and fluorescence spectroscopy. Datta K; Johnson NP; von Hippel PH J Mol Biol; 2006 Jul; 360(4):800-13. PubMed ID: 16784751 [TBL] [Abstract][Full Text] [Related]
18. High-resolution protein-DNA contacts for the yeast RNA polymerase II general transcription machinery. Chen BS; Mandal SS; Hampsey M Biochemistry; 2004 Oct; 43(40):12741-9. PubMed ID: 15461446 [TBL] [Abstract][Full Text] [Related]
19. On the mechanism of inhibition of phage T7 RNA polymerase by lac repressor. Lopez PJ; Guillerez J; Sousa R; Dreyfus M J Mol Biol; 1998 Mar; 276(5):861-75. PubMed ID: 9566192 [TBL] [Abstract][Full Text] [Related]
20. Testing of internal translation initiation via dicistronic constructs in yeast is complicated by production of extraneous transcripts. Mäkeläinen KJ; Mäkinen K Gene; 2007 Apr; 391(1-2):275-84. PubMed ID: 17331675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]