These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 9466936)
1. Structure and hydration of the M-state of the bacteriorhodopsin mutant D96N studied by neutron diffraction. Weik M; Zaccai G; Dencher NA; Oesterhelt D; Hauss T J Mol Biol; 1998 Jan; 275(4):625-34. PubMed ID: 9466936 [TBL] [Abstract][Full Text] [Related]
2. The tertiary structural changes in bacteriorhodopsin occur between M states: X-ray diffraction and Fourier transform infrared spectroscopy. Sass HJ; Schachowa IW; Rapp G; Koch MH; Oesterhelt D; Dencher NA; Büldt G EMBO J; 1997 Apr; 16(7):1484-91. PubMed ID: 9130693 [TBL] [Abstract][Full Text] [Related]
3. The last phase of the reprotonation switch in bacteriorhodopsin: the transition between the M-type and the N-type protein conformation depends on hydration. Kamikubo H; Oka T; Imamoto Y; Tokunaga F; Lanyi JK; Kataoka M Biochemistry; 1997 Oct; 36(40):12282-7. PubMed ID: 9315867 [TBL] [Abstract][Full Text] [Related]
4. Protein conformational changes in the bacteriorhodopsin photocycle. Subramaniam S; Lindahl M; Bullough P; Faruqi AR; Tittor J; Oesterhelt D; Brown L; Lanyi J; Henderson R J Mol Biol; 1999 Mar; 287(1):145-61. PubMed ID: 10074413 [TBL] [Abstract][Full Text] [Related]
5. Relationship between structure, dynamics and function of hydrated purple membrane investigated by neutron scattering and dielectric spectroscopy. Buchsteiner A; Lechner RE; Hauss T; Dencher NA J Mol Biol; 2007 Aug; 371(4):914-23. PubMed ID: 17599349 [TBL] [Abstract][Full Text] [Related]
6. Structural transition of bacteriorhodopsin is preceded by deprotonation of Schiff base: microsecond time-resolved x-ray diffraction study of purple membrane. Oka T; Inoue K; Kataoka M; Yagi N Biophys J; 2005 Jan; 88(1):436-42. PubMed ID: 15516520 [TBL] [Abstract][Full Text] [Related]
7. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422 [TBL] [Abstract][Full Text] [Related]
8. Local-access model for proton transfer in bacteriorhodopsin. Brown LS; Dioumaev AK; Needleman R; Lanyi JK Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720 [TBL] [Abstract][Full Text] [Related]
9. Structural changes of water in the Schiff base region of bacteriorhodopsin: proposal of a hydration switch model. Tanimoto T; Furutani Y; Kandori H Biochemistry; 2003 Mar; 42(8):2300-6. PubMed ID: 12600197 [TBL] [Abstract][Full Text] [Related]
10. The role of water in the extracellular half channel of bacteriorhodopsin. Ganea C; Gergely C; Ludmann K; Váró G Biophys J; 1997 Nov; 73(5):2718-25. PubMed ID: 9370465 [TBL] [Abstract][Full Text] [Related]
11. Chromophore-protein-water interactions in the L intermediate of bacteriorhodopsin: FTIR study of the photoreaction of L at 80 K. Maeda A; Tomson FL; Gennis RB; Ebrey TG; Balashov SP Biochemistry; 1999 Jul; 38(27):8800-7. PubMed ID: 10393556 [TBL] [Abstract][Full Text] [Related]
12. Formation of the M(N) (M(open)) intermediate in the wild-type bacteriorhodopsin photocycle is accompanied by an absorption spectrum shift to shorter wavelength, like that in the mutant D96N bacteriorhodopsin photocycle. Radionov AN; Klyachko VA; Kaulen AD Biochemistry (Mosc); 1999 Oct; 64(10):1210-4. PubMed ID: 10561570 [TBL] [Abstract][Full Text] [Related]
13. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin. Shibata M; Kandori H Biochemistry; 2005 May; 44(20):7406-13. PubMed ID: 15895984 [TBL] [Abstract][Full Text] [Related]
14. A neutron diffraction study of purple membranes under pressure. Rossand IG; Zaccai G; Fragneto G Acta Crystallogr D Biol Crystallogr; 2010 Nov; 66(Pt 11):1232-6. PubMed ID: 21041943 [TBL] [Abstract][Full Text] [Related]
15. Proton channel hydration and dynamics of a bacteriorhodopsin triple mutant with an M-state-like conformation. Lehnert U; Réat V; Zaccai G; Oesterhelt D Eur Biophys J; 2005 Jun; 34(4):344-52. PubMed ID: 15688183 [TBL] [Abstract][Full Text] [Related]
16. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins. Tóth-Boconádi R; Dér A; Keszthelyi L Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739 [TBL] [Abstract][Full Text] [Related]
17. Moist and soft, dry and stiff: a review of neutron experiments on hydration-dynamics-activity relations in the purple membrane of Halobacterium salinarum. Zaccai G Biophys Chem; 2000 Aug; 86(2-3):249-57. PubMed ID: 11026689 [TBL] [Abstract][Full Text] [Related]
18. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. Luecke H; Schobert B; Cartailler JP; Richter HT; Rosengarth A; Needleman R; Lanyi JK J Mol Biol; 2000 Jul; 300(5):1237-55. PubMed ID: 10903866 [TBL] [Abstract][Full Text] [Related]
19. Functional roles of aspartic acid residues at the cytoplasmic surface of bacteriorhodopsin. Brown LS; Needleman R; Lanyi JK Biochemistry; 1999 May; 38(21):6855-61. PubMed ID: 10346907 [TBL] [Abstract][Full Text] [Related]
20. Interaction of the protonated Schiff base with the peptide backbone of valine 49 and the intervening water molecule in the N photointermediate of bacteriorhodopsin. Yamazaki Y; Kandori H; Needleman R; Lanyi JK; Maeda A Biochemistry; 1998 Feb; 37(6):1559-64. PubMed ID: 9484226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]