BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9468382)

  • 1. Development of a topographically organized auditory network in slice culture is calcium dependent.
    Lohmann C; Ilic V; Friauf E
    J Neurobiol; 1998 Feb; 34(2):97-112. PubMed ID: 9468382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axon regeneration in organotypic slice cultures from the mammalian auditory system is topographic and functional.
    Lohmann C; Ehrlich I; Friauf E
    J Neurobiol; 1999 Dec; 41(4):596-611. PubMed ID: 10590182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perineuronal nets show intrinsic patterns of extracellular matrix differentiation in organotypic slice cultures.
    Brückner G; Grosche J
    Exp Brain Res; 2001 Mar; 137(1):83-93. PubMed ID: 11310175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for L-type calcium channels in developmental regulation of transmitter phenotype in primary sensory neurons.
    Brosenitsch TA; Salgado-Commissariat D; Kunze DL; Katz DM
    J Neurosci; 1998 Feb; 18(3):1047-55. PubMed ID: 9437025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature EPSCs in the lateral superior olive before hearing onset: regional and cell-type-specific differences and heterogeneous neuromodulatory effects of ATP.
    Kreinest M; Müller B; Winkelhoff J; Friauf E; Löhrke S
    Brain Res; 2009 Oct; 1295():21-36. PubMed ID: 19647723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical membrane properties of trapezoid body neurons in the rat auditory brain stem are preserved in organotypic slice cultures.
    Löhrke S; Kungel M; Friauf E
    J Neurobiol; 1998 Sep; 36(3):395-409. PubMed ID: 9733074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organotypic slice culture of the rat suprachiasmatic nucleus: sustenance of cellular architecture and circadian rhythm.
    Tominaga K; Inouye SI; Okamura H
    Neuroscience; 1994 Apr; 59(4):1025-42. PubMed ID: 8058118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of voltage-operated calcium channels in rat cerebellar granule neurons and neuronal survival.
    Toescu EC
    Neuroscience; 1999; 94(2):561-70. PubMed ID: 10579216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium and pituitary adenylate cyclase-activating polypeptide induced expression of circadian clock gene mPer1 in the mouse cerebellar granule cell culture.
    Akiyama M; Minami Y; Nakajima T; Moriya T; Shibata S
    J Neurochem; 2001 Aug; 78(3):499-508. PubMed ID: 11483652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycinergic and GABAergic calcium responses in the developing lateral superior olive.
    Kullmann PH; Ene FA; Kandler K
    Eur J Neurosci; 2002 Apr; 15(7):1093-104. PubMed ID: 11982621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of excitatory synaptic transmission to the superior paraolivary and lateral superior olivary nuclei optimizes differential decoding strategies.
    Felix RA; Magnusson AK
    Neuroscience; 2016 Oct; 334():1-12. PubMed ID: 27476438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the GABAA receptor delta subunit is selectively modulated by depolarization in cultured rat cerebellar granule neurons.
    Gault LM; Siegel RE
    J Neurosci; 1997 Apr; 17(7):2391-9. PubMed ID: 9065500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation.
    Kim G; Kandler K
    Nat Neurosci; 2003 Mar; 6(3):282-90. PubMed ID: 12577063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine hydroxylase expression in primary cultures of olfactory bulb: role of L-type calcium channels.
    Cigola E; Volpe BT; Lee JW; Franzen L; Baker H
    J Neurosci; 1998 Oct; 18(19):7638-49. PubMed ID: 9742135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of rhythmic discharges of medullary neurones in organotypic cultures of new-born rats by calcium antagonists.
    Bingmann D; Baker RE; Ballantyne D; Jones D; Widman G
    Neurosci Lett; 1995 Oct; 199(3):187-90. PubMed ID: 8577394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient appearance of calbindin-D28k-positive neurons in the superior olivary complex of developing rats.
    Friauf E
    J Comp Neurol; 1993 Aug; 334(1):59-74. PubMed ID: 8408759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estradiol-induced changes in the activity of hippocampal neurons in network culture are suppressed by co-incubation with gabapentin.
    Rao SP; Sikdar SK
    Brain Res; 2004 Oct; 1022(1-2):126-36. PubMed ID: 15353222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro induction of microcyst-like structures in the superior olivary complex.
    Schwartz IR; Hafidi A; Sanes DH
    Hear Res; 1997 Sep; 111(1-2):136-42. PubMed ID: 9307319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of calcium entry blockers on tension development and calcium influx in rat uterus.
    Granger SE; Hollingsworth M; Weston AH
    Br J Pharmacol; 1986 Jan; 87(1):147-56. PubMed ID: 3955298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporary sensory deprivation changes calcium-binding proteins levels in the auditory brainstem.
    Caicedo A; d'Aldin C; Eybalin M; Puel JL
    J Comp Neurol; 1997 Feb; 378(1):1-15. PubMed ID: 9120049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.