These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9468454)

  • 1. Metformin relaxes rat tail artery by repolarization and resultant decreases in Ca2+ influx and intracellular [Ca2+].
    Chen XL; Panek K; Rembold CM
    J Hypertens; 1997 Mar; 15(3):269-74. PubMed ID: 9468454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitroglycerin relaxes rat tail artery primarily by lowering Ca2+ sensitivity and partially by repolarization.
    Chen XL; Rembold CM
    Am J Physiol; 1996 Sep; 271(3 Pt 2):H962-8. PubMed ID: 8853330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms responsible for forskolin-induced relaxation of rat tail artery.
    Rembold CM; Chen XL
    Hypertension; 1998 Mar; 31(3):872-7. PubMed ID: 9495275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenylephrine contracts rat tail artery by one electromechanical and three pharmacomechanical mechanisms.
    Chen XL; Rembold CM
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H74-81. PubMed ID: 7840305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4-Aminopyridine antagonizes the acute relaxant action of metformin on adrenergic contraction in the ventral tail artery of the rat.
    Peuler JD; Lee JM; Smith JM
    Life Sci; 1999 Oct; 65(23):PL 287-93. PubMed ID: 10622240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of palmatine on isometric force and intracellular calcium levels of arterial smooth muscle.
    Chang YL; Usami S; Hsieh MT; Jiang MJ
    Life Sci; 1999; 64(8):597-606. PubMed ID: 10069523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic nucleotide-dependent regulation of Mn2+ influx, [Ca2+]i, and arterial smooth muscle relaxation.
    Chen XL; Rembold CM
    Am J Physiol; 1992 Aug; 263(2 Pt 1):C468-73. PubMed ID: 1325118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The buffer barrier hypothesis, [Ca2+]i homogeneity, and sarcoplasmic reticulum function in swine carotid artery.
    Rembold CM; Chen XL
    J Physiol; 1998 Dec; 513 ( Pt 2)(Pt 2):477-92. PubMed ID: 9806997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redistribution of intracellular Ca2+ stores after beta-adrenergic stimulation of rat tail artery SMC.
    Miyashita Y; Sollott SJ; Cheng L; Kinsella JL; Koh E; Lakatta EG; Froehlich JP
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H244-55. PubMed ID: 9038944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute vasorelaxant effects of metformin and attenuation by stimulation of sympathetic agonist release.
    Lee JM; Peuler JD
    Life Sci; 1999; 64(4):PL57-63. PubMed ID: 10027762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focal [Ca2+]i increases detected by aequorin but not by fura-2 in histamine- and caffeine-stimulated swine carotid artery.
    Rembold CM; Van Riper DA; Chen XL
    J Physiol; 1995 Nov; 488 ( Pt 3)(Pt 3):549-64. PubMed ID: 8576847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-diabetic biguanides inhibit hormone-induced intracellular Ca2+ concentration oscillations in rat hepatocytes.
    Ubl JJ; Chen S; Stucki JW
    Biochem J; 1994 Dec; 304 ( Pt 2)(Pt 2):561-7. PubMed ID: 7998993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Ca2+-sensitive protein kinase C in phenylephrine enhancement of Ca2+ sensitivity in rat tail artery.
    Sato K; Dohi Y; Suzuki S; Miyagawa K; Takase H; Kojima M; van Breemen C
    J Cardiovasc Pharmacol; 2001 Sep; 38(3):347-55. PubMed ID: 11486239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in intracellular free Ca2+ concentration by activation of alpha-adrenoceptors in rat tail artery.
    Abe K; Saito H; Matsuki N
    Jpn J Pharmacol; 1990 Feb; 52(2):337-44. PubMed ID: 1968986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased store-operated Ca2+ entry into contractile vascular smooth muscle following organ culture.
    Dreja K; Bergdahl A; Hellstrand P
    J Vasc Res; 2001; 38(4):324-31. PubMed ID: 11455203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular calcium stores and oscillatory contractions in arteries from genetically hypertensive rats.
    Tostes RC; Storm DS; Chi DH; Webb RC
    Hypertens Res; 1996 Jun; 19(2):103-11. PubMed ID: 10968203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of 8-bromoguanosine 3':5'-cyclic monophosphate on phenylephrine-induced phosphatidylinositol hydrolysis and contraction in rat caudal artery.
    Lum Min SA; Tabrizchi R
    Br J Pharmacol; 1995 Sep; 116(1):1697-703. PubMed ID: 8564240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin-stimulated glucose transport inhibits Ca2+ influx and contraction in vascular smooth muscle.
    Kahn AM; Lichtenberg RA; Allen JC; Seidel CL; Song T
    Circulation; 1995 Sep; 92(6):1597-603. PubMed ID: 7664446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin inhibits serotonin-induced Ca2+ influx in vascular smooth muscle.
    Kahn AM; Allen JC; Seidel CL; Song T
    Circulation; 1994 Jul; 90(1):384-90. PubMed ID: 8026022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disparate effects of antidiabetic drugs on arterial contraction.
    Peuler JD; Miller JA; Bourghli M; Zammam HY; Soltis EE; Sowers JR
    Metabolism; 1997 Oct; 46(10):1199-205. PubMed ID: 9322807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.