These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9468601)

  • 21. Functional expression of the Vibrio parahaemolyticus Na+/galactose (vSGLT) cotransporter in Xenopus laevis oocytes.
    Leung DW; Turk E; Kim O; Wright EM
    J Membr Biol; 2002 May; 187(1):65-70. PubMed ID: 12029378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intracellular hypertonicity is responsible for water flux associated with Na+/glucose cotransport.
    Charron FM; Blanchard MG; Lapointe JY
    Biophys J; 2006 May; 90(10):3546-54. PubMed ID: 16500986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping the urea channel through the rabbit Na(+)-glucose cotransporter SGLT1.
    Panayotova-Heiermann M; Wright EM
    J Physiol; 2001 Sep; 535(Pt 2):419-25. PubMed ID: 11533134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wet transport proteins.
    Diamond JM
    Nature; 1996 Dec 19-26; 384(6610):611-2. PubMed ID: 8967947
    [No Abstract]   [Full Text] [Related]  

  • 25. A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes.
    Zampighi GA; Kreman M; Boorer KJ; Loo DD; Bezanilla F; Chandy G; Hall JE; Wright EM
    J Membr Biol; 1995 Nov; 148(1):65-78. PubMed ID: 8558603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformational changes couple Na+ and glucose transport.
    Loo DD; Hirayama BA; Gallardo EM; Lam JT; Turk E; Wright EM
    Proc Natl Acad Sci U S A; 1998 Jun; 95(13):7789-94. PubMed ID: 9636229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupled sodium/glucose cotransport by SGLT1 requires a negative charge at position 454.
    Díez-Sampedro A; Loo DD; Wright EM; Zampighi GA; Hirayama BA
    Biochemistry; 2004 Oct; 43(41):13175-84. PubMed ID: 15476411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for the involvement of Ala 166 in coupling Na(+) to sugar transport through the human Na(+)/glucose cotransporter.
    Meinild AK; Loo DD; Hirayama BA; Gallardo E; Wright EM
    Biochemistry; 2001 Oct; 40(39):11897-904. PubMed ID: 11570890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Residue 457 controls sugar binding and transport in the Na(+)/glucose cotransporter.
    Díez-Sampedro A; Wright EM; Hirayama BA
    J Biol Chem; 2001 Dec; 276(52):49188-94. PubMed ID: 11602601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes.
    Mackenzie B; Loo DD; Wright EM
    J Membr Biol; 1998 Mar; 162(2):101-6. PubMed ID: 9538503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The sugar specificity of Na+/glucose cotransporter from rat jejunum.
    Aoshima H; Yokoyama T; Tanizaki J; Izu H; Yamada M
    Biosci Biotechnol Biochem; 1997 Jun; 61(6):979-83. PubMed ID: 9214758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alveolar sodium and liquid transport in mice.
    Icard P; Saumon G
    Am J Physiol; 1999 Dec; 277(6):L1232-8. PubMed ID: 10600895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of the reverse mode of the Na+/glucose cotransporter.
    Eskandari S; Wright EM; Loo DD
    J Membr Biol; 2005 Mar; 204(1):23-32. PubMed ID: 16007500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arginine-427 in the Na+/glucose cotransporter (SGLT1) is involved in trafficking to the plasma membrane.
    Lostao MP; Hirayama BA; Panayotova-Heiermann M; Sampogna SL; Bok D; Wright EM
    FEBS Lett; 1995 Dec; 377(2):181-4. PubMed ID: 8543046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast voltage clamp discloses a new component of presteady-state currents from the Na(+)-glucose cotransporter.
    Chen XZ; Coady MJ; Lapointe JY
    Biophys J; 1996 Nov; 71(5):2544-52. PubMed ID: 8913593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protons drive sugar transport through the Na+/glucose cotransporter (SGLT1).
    Hirayama BA; Loo DD; Wright EM
    J Biol Chem; 1994 Aug; 269(34):21407-10. PubMed ID: 8063771
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Downregulation of the Na(+)- D-glucose cotransporter SGLT1 by protein RS1 (RSC1A1) is dependent on dynamin and protein kinase C.
    Veyhl M; Wagner CA; Gorboulev V; Schmitt BM; Lang F; Koepsell H
    J Membr Biol; 2003 Nov; 196(1):71-81. PubMed ID: 14724758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating the conformational states of the rabbit Na+/glucose cotransporter.
    Krofchick D; Silverman M
    Biophys J; 2003 Jun; 84(6):3690-702. PubMed ID: 12770876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1.
    Panayotova-Heiermann M; Loo DD; Lam JT; Wright EM
    Biochemistry; 1998 Jul; 37(29):10522-8. PubMed ID: 9671524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies.
    Parent L; Supplisson S; Loo DD; Wright EM
    J Membr Biol; 1992 Jan; 125(1):49-62. PubMed ID: 1542106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.