BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9468632)

  • 1. Chain conformational analysis of beijeran by n-h map calculations.
    Yui T; Nabekura T; Ogawa K
    Carbohydr Res; 1997 Nov; 304(3-4):341-5. PubMed ID: 9468632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray structure analysis of the sodium salt of beijeran.
    Bian W; Chandrasekaran R; Ogawa K
    Carbohydr Res; 2002 Feb; 337(4):305-14. PubMed ID: 11841811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing glycosidic linkage flexibility: conformational analysis of the repeating trisaccharide unit of Aeromonas salmonicida.
    Peters T; Weimar T
    J Biomol NMR; 1994 Jan; 4(1):97-116. PubMed ID: 7510557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transferred nuclear Overhauser enhancement experiments show that the monoclonal antibody strep 9 selects a local minimum conformation of a Streptococcus group A trisaccharide-hapten.
    Weimar T; Harris SL; Pitner JB; Bock K; Pinto BM
    Biochemistry; 1995 Oct; 34(41):13672-81. PubMed ID: 7577958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conformational dynamics study of alpha-l-Rhap-(1-->2)[alpha-l-Rhap-(1-->3)]-alpha-l-Rhap-OMe in solution by NMR experiments and molecular simulations.
    Eklund R; Lycknert K; Söderman P; Widmalm G
    J Phys Chem B; 2005 Oct; 109(42):19936-45. PubMed ID: 16853578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chain conformation of deacetylated beijeran calcium salt.
    Ogawa K; Yui T; Nakata K; Nitta Y; Kakuta M; Misaki A
    Biosci Biotechnol Biochem; 1996 Mar; 60(3):551-3. PubMed ID: 8901123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes due to vicinal glycosylation: the branched alpha-L-Rhap(1-2)[beta-D-Galp(1-3)]-beta-D-Glc1-OMe trisaccharide compared with its parent disaccharides.
    Kozár T; Nifant'ev NE; Grosskurth H; Dabrowski U; Dabrowski J
    Biopolymers; 1998 Nov; 46(6):417-32. PubMed ID: 9798429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MM3 potential energy surfaces of trisaccharides. II. Carrageenan models containing 3,6-anhydro-D-galactose.
    Stortz CA; Cerezo AS
    Biopolymers; 2003 Oct; 70(2):227-39. PubMed ID: 14517911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic simulations of the molecular conformations of wild type and mutant xanthan polymers suggest that conformational differences may contribute to observed differences in viscosity.
    Levy S; Schuyler SC; Maglothin RK; Staehelin LA
    Biopolymers; 1996 Feb; 38(2):251-72. PubMed ID: 8589257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling.
    Perić-Hassler L; Hansen HS; Baron R; Hünenberger PH
    Carbohydr Res; 2010 Aug; 345(12):1781-801. PubMed ID: 20576257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational analysis of the trisaccharide components of the repeating units of the capsular polysaccharides of Streptococcus pneumoniae types 19F and 19A.
    Ciuffreda P; Colombo D; Ronchetti F; Toma L
    Carbohydr Res; 1992 Aug; 232(2):327-39. PubMed ID: 1423362
    [No Abstract]   [Full Text] [Related]  

  • 12. Conformations of (1----4)-linked alpha-D-galacturono-di- and -tri-saccharides in solution analysed by n.m.r. measurements and theoretical calculations.
    Hricovini M; Bystrický S; Malovíková A
    Carbohydr Res; 1991 Nov; 220():23-31. PubMed ID: 1811859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative simulation of pneumococcal serogroup 19 polysaccharide repeating units with two carbohydrate force fields.
    Kuttel M; Gordon M; Ravenscroft N
    Carbohydr Res; 2014 May; 390():20-7. PubMed ID: 24681444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformations of disaccharides by empirical force field calculations. Part V: Conformational maps of beta-gentiobiose in an optimized consistent force field.
    Engelsen SB; Rasmussen K
    Int J Biol Macromol; 1993 Feb; 15(1):56-62. PubMed ID: 8443134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation and NMR study of a blood group H trisaccharide.
    Widmalm G; Venable RM
    Biopolymers; 1994 Aug; 34(8):1079-88. PubMed ID: 8075388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of the structure in aqueous solution of the exopolysaccharide produced by Lactobacillus helveticus 766.
    Faber EJ; van Kuik JA; Kamerling JP; Vliegenthart JF
    Biopolymers; 2002 Jan; 63(1):66-76. PubMed ID: 11754349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N.m.r. and conformational analysis of some 2,3-disubstituted methyl alpha-L-rhamnopyranosides.
    Kochetkov NK; Lipkind GM; Shashkov AS; Nifant'ev NE
    Carbohydr Res; 1991 Dec; 221():145-68. PubMed ID: 1816916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MM3 potential energy surfaces of trisaccharide models of lambda-, mu-, and nu-carrageenans.
    Stortz CA
    Carbohydr Res; 2006 Nov; 341(15):2531-42. PubMed ID: 16952344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and solution conformations of a cyclic trisaccharide from high-resolution n.m.r. spectroscopy and molecular modelling.
    Bonas G; Vignon MR; Pérez S
    Carbohydr Res; 1991 Apr; 211(2):191-205. PubMed ID: 1663000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexibility of "polyunsaturated fatty acid chains" and peptide backbones: A comparative ab initio study.
    Law JM; Setiadi DH; Chass GA; Csizmadia IG; Viskolcz B
    J Phys Chem A; 2005 Jan; 109(3):520-33. PubMed ID: 16833374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.