These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 9469887)
41. Heavy metal contamination in a typical mining town of a minority and mountain area, South China. Zhang XY; Tang LS; Zhang G; Wu HD Bull Environ Contam Toxicol; 2009 Jan; 82(1):31-8. PubMed ID: 18841319 [TBL] [Abstract][Full Text] [Related]
42. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Gupta AK; Sinha S Chemosphere; 2006 Jun; 64(1):161-73. PubMed ID: 16330080 [TBL] [Abstract][Full Text] [Related]
43. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Kumar Sharma R; Agrawal M; Marshall F Ecotoxicol Environ Saf; 2007 Feb; 66(2):258-66. PubMed ID: 16466660 [TBL] [Abstract][Full Text] [Related]
44. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Pedron F; Petruzzelli G; Barbafieri M; Tassi E Chemosphere; 2009 May; 75(6):808-14. PubMed ID: 19217142 [TBL] [Abstract][Full Text] [Related]
45. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. Yang H; Wong JW; Yang ZM; Zhou LX J Environ Sci (China); 2001 Jul; 13(3):368-75. PubMed ID: 11590773 [TBL] [Abstract][Full Text] [Related]
46. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2009 Mar; 74(10):1292-300. PubMed ID: 19118864 [TBL] [Abstract][Full Text] [Related]
47. Uptake and translocation of metals in fenugreek grown on soil amended with tannery sludge: involvement of antioxidants. Sinha S; Gupta AK; Bhatt K Ecotoxicol Environ Saf; 2007 Jun; 67(2):267-77. PubMed ID: 17049375 [TBL] [Abstract][Full Text] [Related]
48. Assessment of trace metal levels in some moss and lichen samples collected from near the motorway in Turkey. Mendil D; Celik F; Tuzen M; Soylak M J Hazard Mater; 2009 Jul; 166(2-3):1344-50. PubMed ID: 19153010 [TBL] [Abstract][Full Text] [Related]
49. Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Freitas H; Prasad MN; Pratas J Environ Int; 2004 Mar; 30(1):65-72. PubMed ID: 14664866 [TBL] [Abstract][Full Text] [Related]
50. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J; Cao X; Zhou Q; Ma LQ Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337 [TBL] [Abstract][Full Text] [Related]
51. Lichens as biomonitors of air quality around a diamond mine, northwest territories, Canada. Naeth MA; Wilkinson SR J Environ Qual; 2008; 37(5):1675-84. PubMed ID: 18689728 [TBL] [Abstract][Full Text] [Related]
52. Effect of biosolid incorporation to mollisol soils on Cr, Cu, Ni, Pb, and Zn fractionation, and relationship with their bioavailability. Guerra P; Ahumada I; Carrasco A Chemosphere; 2007 Aug; 68(11):2021-7. PubMed ID: 17418882 [TBL] [Abstract][Full Text] [Related]
53. Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Conesa HM; Faz A; Arnaldos R Chemosphere; 2007 Jan; 66(1):38-44. PubMed ID: 16820188 [TBL] [Abstract][Full Text] [Related]
54. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Kidd PS; Domínguez-Rodríguez MJ; Díez J; Monterroso C Chemosphere; 2007 Jan; 66(8):1458-67. PubMed ID: 17109934 [TBL] [Abstract][Full Text] [Related]
55. Influence of soil chemistry on metal and bioessential element concentrations in nymphal and adult periodical cicadas (Magicicada spp.). Robinson GR; Sibrell PL; Boughton CJ; Yang LH Sci Total Environ; 2007 Mar; 374(2-3):367-78. PubMed ID: 17258290 [TBL] [Abstract][Full Text] [Related]
56. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Zhuang P; McBride MB; Xia H; Li N; Li Z Sci Total Environ; 2009 Feb; 407(5):1551-61. PubMed ID: 19068266 [TBL] [Abstract][Full Text] [Related]
57. Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia). Antonijević MM; Dimitrijević MD; Milić SM; Nujkić MM J Environ Monit; 2012 Mar; 14(3):866-77. PubMed ID: 22314513 [TBL] [Abstract][Full Text] [Related]
58. Lichens as bioindicators of atmospheric heavy metal pollution in Singapore. Ng OH; Tan BC; Obbard JP Environ Monit Assess; 2006 Dec; 123(1-3):63-74. PubMed ID: 17082905 [TBL] [Abstract][Full Text] [Related]
59. Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Backor M; Peksa O; Skaloud P; Backorová M Ecotoxicol Environ Saf; 2010 May; 73(4):603-12. PubMed ID: 20031214 [TBL] [Abstract][Full Text] [Related]
60. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species. Nawab J; Khan S; Shah MT; Khan K; Huang Q; Ali R Int J Phytoremediation; 2015; 17(9):801-13. PubMed ID: 26079739 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]