BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9470173)

  • 1. Stereospecific metabolism of isomeric epoxyoctadecanoic acids in the lactone-producing yeast Sporidiobolus salmonicolor.
    Haffner T; Tressl R
    Lipids; 1998 Jan; 33(1):47-58. PubMed ID: 9470173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chirality of the gamma-lactones produced by Sporidiobolus salmonicolor grown in two different media.
    Dufossé L; Féron G; Latrasse A; Guichard E; Spinnler HE
    Chirality; 1997; 9(7):667-71. PubMed ID: 9366027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid accumulation in the yeast Sporidiobolus salmonicolor during batch production of gamma-decalactone.
    Feron G; Dufossé L; Mauvais G; Bonnarme P; Spinnler HE
    FEMS Microbiol Lett; 1997 Apr; 149(1):17-24. PubMed ID: 9103973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production in vitro by the cytochrome P450 CYP94A1 of major C18 cutin monomers and potential messengers in plant-pathogen interactions: enantioselectivity studies.
    Pinot F; Benveniste I; Salaün JP; Loreau O; Noël JP; Schreiber L; Durst F
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):27-32. PubMed ID: 10432296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and oxidation of elaidic acid by Ehrlich ascites tumor cells.
    Awad AB
    Cancer Biochem Biophys; 1981; 5(2):111-7. PubMed ID: 7248917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of ricinoleic acid into gamma-decalactone: beta-oxidation and long chain acyl intermediates of ricinoleic acid in the genus Sporidiobolus sp.
    Blin-Perrin C; Molle D; Dufosse L; Le-Quere JL; Viel C; Mauvais G; Feron G
    FEMS Microbiol Lett; 2000 Jul; 188(1):69-74. PubMed ID: 10867236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid metabolism in the perfused chicken liver. The uptake and metabolism of oleic acid, elaidic acid, cis-vaccenic acid, trans-vaccenic acid and stearic acid.
    Bickerstaffe R; Annison EF
    Biochem J; 1970 Jul; 118(3):433-42. PubMed ID: 5472169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroperoxide-dependent epoxidation of unsaturated fatty acids in the broad bean (Vicia faba L.).
    Hamberg M; Hamberg G
    Arch Biochem Biophys; 1990 Dec; 283(2):409-16. PubMed ID: 2275553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol.
    Cardoso LA; Jäckel S; Karp SG; Framboisier X; Chevalot I; Marc I
    Bioresour Technol; 2016 Jan; 200():374-9. PubMed ID: 26512861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of 9,10-epoxyoctadecanoic acid in human urine using gas chromatography-mass spectrometry.
    Ulsaker GA; Teien G
    Biomed Chromatogr; 1995; 9(4):183-7. PubMed ID: 8520208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of linoleic acid by Clavibacter sp. ALA2: heterocyclic and heterobicyclic fatty acids.
    Gardner HW; Hou CT; Weisleder D; Brown W
    Lipids; 2000 Oct; 35(10):1055-60. PubMed ID: 11104009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereospecific hydration of the delta-9 double bond of oleic acid.
    Niehaus WG; Torkelson A; Kisic A; Bednarczyk DJ; Schroepfer GJ
    J Biol Chem; 1970 Aug; 245(15):3790-7. PubMed ID: 5492948
    [No Abstract]   [Full Text] [Related]  

  • 13. Microbial oxidation of oleic acid.
    el-Sharkawy SH; Yang W; Dostal L; Rosazza JP
    Appl Environ Microbiol; 1992 Jul; 58(7):2116-22. PubMed ID: 1637152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism in humans of cis-12,trans-15-octadecadienoic acid relative to palmitic, stearic, oleic and linoleic acids.
    Emken EA; Rohwedder WK; Adlof RO; Rakoff H; Gulley RM
    Lipids; 1987 Jul; 22(7):495-504. PubMed ID: 3306237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas chromatography-mass spectrometry of cis-9,10-epoxyoctadecanoic acid (cis-EODA). I. Direct evidence for cis-EODA formation from oleic acid oxidation by liver microsomes and isolated hepatocytes.
    Tsikas D; Sawa M; Brunner G; Gutzki FM; Meyer HH; Frölich JC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Feb; 784(2):351-65. PubMed ID: 12505783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoglobin-catalyzed bis-allylic hydroxylation and epoxidation of linoleic acid.
    Hamberg M
    Arch Biochem Biophys; 1997 Aug; 344(1):194-9. PubMed ID: 9244397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolism of epoxy fatty esters by the purified epoxide hydrolase from mouse and human liver.
    Halarnkar PP; Wixtrom RN; Silva MH; Hammock BD
    Arch Biochem Biophys; 1989 Jul; 272(1):226-36. PubMed ID: 2735763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-(2-hydroxybenzyl)-omega-amino carbonic acids and their derivatives as tools for biochemical and biophysical investigations.
    Lurie E; Kaplun A; Kulakov V; Matveev V; Shvets V
    Biochem Mol Biol Int; 1993 May; 30(1):99-105. PubMed ID: 8358340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic fate of oleic acid, palmitic acid and stearic acid in cultured hamster hepatocytes.
    Bruce JS; Salter AM
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):847-52. PubMed ID: 8670161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of fatty acid in yeast: addition of reducing agents to the reaction medium influences beta-oxidation activities, gamma-decalactone production, and cell ultrastructure in Sporidiobolus ruinenii cultivated on ricinoleic acid methyl ester.
    Feron G; Mauvais G; Lherminier J; Michel J; Wang XD; Viel C; Cachon R
    Can J Microbiol; 2007 Jun; 53(6):738-49. PubMed ID: 17668034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.