These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 9470174)

  • 1. Biosynthesis of triacylglycerols containing ricinoleate in castor microsomes using 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine as the substrate of oleoyl-12-hydroxylase.
    Lin JT; Woodruff CL; Lagouche OJ; McKeon TA; Stafford AE; Goodrich-Tanrikulu M; Singleton JA; Haney CA
    Lipids; 1998 Jan; 33(1):59-69. PubMed ID: 9470174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm.
    Bafor M; Smith MA; Jonsson L; Stobart K; Stymne S
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of 1-acyl-2-oleoyl-sn-glycero-3-phosphoethanolamine in castor oil biosynthesis.
    Lin JT; Lew KM; Chen JM; Iwasaki Y; McKeon TA
    Lipids; 2000 May; 35(5):481-6. PubMed ID: 10907782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular species of PC and PE formed during castor oil biosynthesis.
    Lin JT; Chen JM; Chen P; Liao LP; McKeon TA
    Lipids; 2002 Oct; 37(10):991-5. PubMed ID: 12530559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regiospecific analysis of diricinoleoylacylglycerols in castor (Ricinus communis L.) oil by electrospray ionization-mass spectrometry.
    Lin JT; Arcinas A
    J Agric Food Chem; 2007 Mar; 55(6):2209-16. PubMed ID: 17311402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of oleoyl-12-hydroxylase in castor microsomes using the putative substrate, 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine.
    Lin JT; McKeon TA; Goodrich-Tanrikulu M; Stafford AE
    Lipids; 1996 Jun; 31(6):571-7. PubMed ID: 8784737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the incorporation of oleate and ricinoleate into phosphatidylcholines and acylglycerols in soybean microsomes.
    Lin JT; Ikeda MD; McKeon TA
    J Agric Food Chem; 2004 Mar; 52(5):1152-6. PubMed ID: 14995113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of ricinoleate in castor oil.
    McKeon TA; Lin JT; Stafford AE
    Adv Exp Med Biol; 1999; 464():37-47. PubMed ID: 10335384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata.
    Bafor M; Jonsson L; Stobart AK; Stymne S
    Biochem J; 1990 Nov; 272(1):31-8. PubMed ID: 2264835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular species of acylglycerols incorporating radiolabeled fatty acids from castor (Ricinus communis L.) microsomal incubations.
    Lin JT; Chen JM; Liao LP; McKeon TA
    J Agric Food Chem; 2002 Aug; 50(18):5077-81. PubMed ID: 12188611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds.
    Stymne S; Appelqvist LA
    Eur J Biochem; 1978 Oct; 90(2):223-9. PubMed ID: 710426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor.
    Tomosugi M; Ichihara K; Saito K
    Planta; 2006 Jan; 223(2):349-58. PubMed ID: 16133210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delta 6- and delta 12-desaturase activities and phosphatidic acid formation in microsomal preparations from the developing cotyledons of common borage (Borago officinalis).
    Griffiths G; Stobart AK; Stymne S
    Biochem J; 1988 Jun; 252(3):641-7. PubMed ID: 3421914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for an oleoyl phosphatidylcholine desaturase in microsomal preparations from cotyledons of safflower (Carthamus tinctorius) seed.
    Slack CR; Roughan PG; Browse J
    Biochem J; 1979 Jun; 179(3):649-56. PubMed ID: 475773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processive interfacial catalysis by mammalian 85-kilodalton phospholipase A2 enzymes on product-containing vesicles: application to the determination of substrate preferences.
    Hanel AM; Schüttel S; Gelb MH
    Biochemistry; 1993 Jun; 32(23):5949-58. PubMed ID: 8507635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereospecificity of monoacylglycerol and diacylglycerol acyltransferases from rat intestine as determined by chiral phase high-performance liquid chromatography.
    Lehner R; Kuksis A; Itabashi Y
    Lipids; 1993 Jan; 28(1):29-34. PubMed ID: 8446008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a PLDζ2 Homology Gene from Developing Castor Bean Endosperm.
    Tian B; Sun M; Jayawardana K; Wu D; Chen G
    Lipids; 2020 Sep; 55(5):537-548. PubMed ID: 32115716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labelling of glycerolipids in the cotyledons of developing oilseeds by [1-14C] acetate and [2-3H] glycerol.
    Slack CR; Roughan PG; Balasingham N
    Biochem J; 1978 Feb; 170(2):421-33. PubMed ID: 580379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acylation of lysophosphatidylcholine in bovine heart muscle microsomes: purification and kinetic properties of acyl-CoA:1-acyl-sn-glycero-3-phosphocholine O-acyltransferase.
    Sanjanwala M; Sun GY; Cutrera MA; MacQuarrie RA
    Arch Biochem Biophys; 1988 Sep; 265(2):476-83. PubMed ID: 3421720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-specific differences in metabolites and transcripts contribute to the heterogeneity of ricinoleic acid accumulation in Ricinus communis L. (castor) seeds.
    Sturtevant D; Romsdahl TB; Yu XH; Burks DJ; Azad RK; Shanklin J; Chapman KD
    Metabolomics; 2019 Jan; 15(1):6. PubMed ID: 30830477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.