BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 9470175)

  • 21. Stereoselectivity of lipases: esterification reactions of octadecylglycerol.
    Meusel D; Weber N; Mukherjee KD
    Chem Phys Lipids; 1992 Apr; 61(2):193-8. PubMed ID: 1511492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 5-[4-(1-Hydroxyethyl)phenyl]-10,15,20-triphenylporphyrin as a probe of the transition-state conformation in hydrolase-catalyzed enantioselective transesterifications.
    Ema T; Jittani M; Furuie K; Utaka M; Sakai T
    J Org Chem; 2002 Apr; 67(7):2144-51. PubMed ID: 11925221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nature of fatty acid modifies the equilibrium position in the esterification catalyzed by lipase.
    Flores MV; Sewalt JJ; Janssen AE; van der Padt A
    Biotechnol Bioeng; 2000 Feb; 67(3):364-71. PubMed ID: 10620267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Esterification of polyunsaturated fatty acids by various forms of immobilized lipase from Rhizomucor miehei.
    Kosugi Y; Roy PK; Chang Q; Shu-Gui C; Fukatsu M; Kanazawa K; Nakanishi H
    Lipids; 2000 Apr; 35(4):461-6. PubMed ID: 10858032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil.
    Kahveci D; Xu X
    Biotechnol Lett; 2011 Oct; 33(10):2065-71. PubMed ID: 21695486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of stearidonic acid-rich triacylglycerol via a two-step enzymatic esterification.
    Kim NH; Kim H; Choi N; Kim Y; Kim BH; Kim IH
    Food Chem; 2019 Jan; 270():332-337. PubMed ID: 30174055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of D-allose fatty acid esters via lipase-catalyzed regioselective transesterification.
    Afach G; Kawanami Y; Izumori K
    Biosci Biotechnol Biochem; 2005 Apr; 69(4):833-5. PubMed ID: 15849425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymic acylation of methyl D- and L-glycopyranosides: influence of the 3-hydroxyl group.
    Colombo D; Ronchetti F; Scala A; Taino IM; Toma L
    Bioorg Med Chem; 1993 Nov; 1(5):375-80. PubMed ID: 7521747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Candida rugosa lipase LIP1-catalyzed transesterification to produce human milk fat substitute.
    Srivastava A; Akoh CC; Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Jul; 54(14):5175-81. PubMed ID: 16819932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical resolution of (+/-)-1-aryl-1-alkanols using enantioselective transesterification by lipases.
    Negi S; Umetsu K; Nishijo Y; Kano K; Nakamura K
    Enantiomer; 2000; 5(1):63-70. PubMed ID: 10763870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipase activation by molecular bioimprinting: The role of interactions between fatty acids and enzyme active site.
    Brandão LMS; Barbosa MS; Souza RL; Pereira MM; Lima ÁS; Soares CMF
    Biotechnol Prog; 2021 Jan; 37(1):e3064. PubMed ID: 32776684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Screening of lipases for the synthesis of xylitol monoesters by chemoenzymatic esterification and the potential of microwave and ultrasound irradiations to enhance the reaction rate.
    Rufino AR; Biaggio FC; Santos JC; de Castro HF
    Int J Biol Macromol; 2010 Jul; 47(1):5-9. PubMed ID: 20420851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conversion of sunflower oil to biodiesel by alcoholysis using immobilized lipase.
    Sagiroglu A
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(2):138-49. PubMed ID: 18437590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immobilization of lipases on different carriers and their use in synthesis of pentyl isovalerates.
    Sagiroglu A; Telefoncu A
    Prep Biochem Biotechnol; 2004 May; 34(2):169-78. PubMed ID: 15195711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipase-catalyzed Synthesis of Oleoyl-lysophosphatidylcholine by Direct Esterification in Solvent-free Medium without Water Removal.
    Mnasri T; Ergan F; Herault J; Pencreac'h G
    J Oleo Sci; 2017 Sep; 66(9):1009-1016. PubMed ID: 28794312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipase-Catalyzed Esterification of Geraniol and Citronellol for the Synthesis of Terpenic Esters.
    da Silva Corrêa L; Henriques RO; Rios JV; Lerin LA; de Oliveira D; Furigo A
    Appl Biochem Biotechnol; 2020 Feb; 190(2):574-583. PubMed ID: 31396887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anatomy of lipase binding sites: the scissile fatty acid binding site.
    Pleiss J; Fischer M; Schmid RD
    Chem Phys Lipids; 1998 Jun; 93(1-2):67-80. PubMed ID: 9720251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applications of immobilized lipases to transesterification and esterification reactions in nonaqueous systems.
    Mustranta A; Forssell P; Poutanen K
    Enzyme Microb Technol; 1993 Feb; 15(2):133-9. PubMed ID: 7763454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microwave-assisted rapid characterization of lipase selectivities.
    Bradoo S; Rathi P; Saxena RK; Gupta R
    J Biochem Biophys Methods; 2002 Apr; 51(2):115-20. PubMed ID: 12062110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-yield synthesis of wax esters catalysed by modified Candida rugosa lipase.
    Guncheva MH; Zhiryakova D
    Biotechnol Lett; 2008 Mar; 30(3):509-12. PubMed ID: 17957342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.