These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9471055)

  • 1. Enhanced oxalate transport in nucleated red blood cells.
    Selvam R; Devi VS
    Eur Urol; 1998; 33(1):124-8. PubMed ID: 9471055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raised transmembrane oxalate flux in red blood cells in idiopathic calcium oxalate nephrolithiasis.
    Baggio B; Gambaro G; Marchini F; Cicerello E; Borsatti A
    Lancet; 1984 Jul; 2(8393):12-3. PubMed ID: 6145933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate.
    Wieth JO
    J Physiol; 1979 Sep; 294():521-39. PubMed ID: 512956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of oxalate transport by the human erythrocyte band 3 protein.
    Jennings ML; Adame MF
    J Gen Physiol; 1996 Jan; 107(1):145-59. PubMed ID: 8741736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y; Mo S; Mota de Freitas D
    Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosaminoglycan content, oxalate self-exchange and protein phosphorylation in erythrocytes of patients with 'idiopathic' calcium oxalate nephrolithiasis.
    Baggio B; Marzaro G; Gambaro G; Marchini F; Williams HE; Borsatti A
    Clin Sci (Lond); 1990 Aug; 79(2):113-6. PubMed ID: 2167799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Abnormalities in the erythrocyte membrane transport of oxalate in calcium oxalate lithogenesis].
    Baggio B; Gambaro G; Marchini F; Cicerello E; Borsatti A
    Nephrologie; 1984; 5(4):173-4. PubMed ID: 6527719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of nuclear pore complex oxalate binding protein from human kidney.
    Selvam R; Vijaya R; Sivakamasundari P
    Mol Cell Biochem; 2003 Jan; 243(1-2):1-8. PubMed ID: 12619882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in band 3 protein and anion exchange in red blood cells of renal failure patients.
    Saradhadevi V; Sakthivel R; Vedamoorthy S; Selvam R; Parinandi N
    Mol Cell Biochem; 2005 May; 273(1-2):11-24. PubMed ID: 16013436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ characterization of oxalate transport across the basolateral membrane of the proximal tubule.
    Brändle E; Bernt U; Hautmann RE
    Pflugers Arch; 1998 May; 435(6):840-9. PubMed ID: 9518514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of the phosphate self-exchange flux in human erythrocytes and erythrocyte ghosts.
    Stadler F; Schnell KF
    J Membr Biol; 1990 Oct; 118(1):19-47. PubMed ID: 2283679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between anion exchange and net anion flow across the human red blood cell membrane.
    Knauf PA; Fuhrmann GF; Rothstein S; Rothstein A
    J Gen Physiol; 1977 Mar; 69(3):363-86. PubMed ID: 15047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxalate transport by anion exchange across rabbit ileal brush border.
    Knickelbein RG; Aronson PS; Dobbins JW
    J Clin Invest; 1986 Jan; 77(1):170-5. PubMed ID: 3003149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkali metal cation transport through the human erythrocyte membrane by the anion exchange mechanism.
    Funder J
    Acta Physiol Scand; 1980 Jan; 108(1):31-7. PubMed ID: 7376905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of a link between erythrocyte band 3 phosphorylation and anion transport in patients with 'idiopathic' calcium oxalate nephrolithiasis.
    Baggio B; Bordin L; Gambaro G; Piccoli A; Marzaro G; Clari G
    Miner Electrolyte Metab; 1993; 19(1):17-20. PubMed ID: 8393959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions.
    Krick W; Schnedler N; Burckhardt G; Burckhardt BC
    Am J Physiol Renal Physiol; 2009 Jul; 297(1):F145-54. PubMed ID: 19369292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Oxalate influx rate in red blood cells in calcium oxalate nephrolithiasis].
    Kato T; Yamakawa K; Kawamura J
    Hinyokika Kiyo; 1991 Aug; 37(8):837-44. PubMed ID: 1957725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein.
    Legrum B; Passow H
    Biochim Biophys Acta; 1989 Feb; 979(2):193-207. PubMed ID: 2923878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of inhibition of RBC HCO3-/Cl- exchange on CO2 excretion and downstream pH disequilibrium in isolated rat lungs.
    Crandall ED; Mathew SJ; Fleischer RS; Winter HI; Bidani A
    J Clin Invest; 1981 Oct; 68(4):853-62. PubMed ID: 6793631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloride-bicarbonate exchange and related transport processes.
    Lowe AG; Lambert A
    Biochim Biophys Acta; 1982 Dec; 694(4):353-74. PubMed ID: 6760896
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.