These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 9472733)
21. Lateralization of travelling wave response in the hearing organ of bushcrickets. Palghat Udayashankar A; Kössl M; Nowotny M PLoS One; 2014; 9(1):e86090. PubMed ID: 24465889 [TBL] [Abstract][Full Text] [Related]
22. Structure of atympanate tibial organs in legs of the cave-living ensifera, Troglophilus neglectus (Gryllacridoidea, Raphidophoridae). Jeram S; Rössler W; Čokl A; Kalmring K J Morphol; 1995 Jan; 223(1):109-118. PubMed ID: 29865296 [TBL] [Abstract][Full Text] [Related]
23. Auditory mechanics in a bush-cricket: direct evidence of dual sound inputs in the pressure difference receiver. Jonsson T; Montealegre-Z F; Soulsbury CD; Robson Brown KA; Robert D J R Soc Interface; 2016 Sep; 13(122):. PubMed ID: 27683000 [TBL] [Abstract][Full Text] [Related]
24. Mechanical filtering for narrow-band hearing in the weta. Lomas K; Montealegre-Z F; Parsons S; Field LH; Robert D J Exp Biol; 2011 Mar; 214(Pt 5):778-85. PubMed ID: 21307064 [TBL] [Abstract][Full Text] [Related]
25. Are all auditory sensilla of bushcrickets bimodal? Comment on: R. D. Zhantiev and O. S. Korsunovskaya, Functions of chordotonal sensilla in bushcrickets (Orthoptera, Tettigoniidae); Entomological Review, 2021, vol. 101 (6), pp. 755-766. Stritih-Peljhan N; Strauß J; Stumpner A J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):709-714. PubMed ID: 35585764 [TBL] [Abstract][Full Text] [Related]
26. The contribution of tympanic transmission to fine temporal signal evaluation in an ultrasonic moth. Rodríguez RL; Schul J; Cocroft RB; Greenfield MD J Exp Biol; 2005 Nov; 208(Pt 21):4159-65. PubMed ID: 16244174 [TBL] [Abstract][Full Text] [Related]
27. Comparison of song frequency and receptor tuning in two closely related bushcricket species. Kalmring K; Rössler W; Jatho M; Hoffmann E Acta Biol Hung; 1995; 46(2-4):457-69. PubMed ID: 8853719 [TBL] [Abstract][Full Text] [Related]
28. Matching sender and receiver: poikilothermy and frequency tuning in a tree cricket. Mhatre N; Bhattacharya M; Robert D; Balakrishnan R J Exp Biol; 2011 Aug; 214(Pt 15):2569-78. PubMed ID: 21753051 [TBL] [Abstract][Full Text] [Related]
29. Comparative micromechanics of bushcricket ears with and without a specialized auditory fovea region in the crista acustica. Scherberich J; Taszus R; Stoessel A; Nowotny M Proc Biol Sci; 2020 Jun; 287(1929):20200909. PubMed ID: 32576108 [TBL] [Abstract][Full Text] [Related]
30. Experimental and Theoretical Explorations of Traveling Waves and Tuning in the Bushcricket Ear. Olson ES; Nowotny M Biophys J; 2019 Jan; 116(1):165-177. PubMed ID: 30573177 [TBL] [Abstract][Full Text] [Related]
31. Signal transmission in noisy environments: auditory masking in the tympanic nerve of the bushcricket Metaballus litus (Orthoptera: Tettigoniinae). Bailey WJ; Stephen RO; Yeoh P J Acoust Soc Am; 1988 May; 83(5):1828-32. PubMed ID: 3403797 [TBL] [Abstract][Full Text] [Related]
32. Neuroanatomy of the complex tibial organ of Stenopelmatus (Orthoptera: Ensifera: Stenopelmatidae). Strauss J; Lakes-Harlan R J Comp Neurol; 2008 Nov; 511(1):81-91. PubMed ID: 18729154 [TBL] [Abstract][Full Text] [Related]
33. The tracheal system in the stick insect prothorax and prothoracic legs: Homologies to Orthoptera and relations to mechanosensory functions. Strauß J Arthropod Struct Dev; 2021 Jul; 63():101074. PubMed ID: 34116374 [TBL] [Abstract][Full Text] [Related]
34. Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: II. complex tibial organ. Nishino H; Field LH J Comp Neurol; 2003 Sep; 464(3):327-42. PubMed ID: 12900927 [TBL] [Abstract][Full Text] [Related]
35. Morphological basis for a tonotopic design of an insect ear. Hummel J; Kössl M; Nowotny M J Comp Neurol; 2017 Jul; 525(10):2443-2455. PubMed ID: 28369996 [TBL] [Abstract][Full Text] [Related]
36. Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. Stritih N; Stumpner A Zoology (Jena); 2009; 112(1):48-68. PubMed ID: 18835145 [TBL] [Abstract][Full Text] [Related]
37. Sound wave propagation on the human skull surface with bone conduction stimulation. Dobrev I; Sim JH; Stenfelt S; Ihrle S; Gerig R; Pfiffner F; Eiber A; Huber AM; Röösli C Hear Res; 2017 Nov; 355():1-13. PubMed ID: 28964568 [TBL] [Abstract][Full Text] [Related]
38. Mechanical tuning and amplification within the apex of the guinea pig cochlea. Recio-Spinoso A; Oghalai JS J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742 [TBL] [Abstract][Full Text] [Related]
39. Low-frequency vibration transmission and mechanosensory detection in the legs of cave crickets. Stritih-Peljhan N; Rühr PT; Buh B; Strauß J Comp Biochem Physiol A Mol Integr Physiol; 2019 Jul; 233():89-96. PubMed ID: 30978469 [TBL] [Abstract][Full Text] [Related]
40. The complex tibial organ of the New Zealand ground weta: sensory adaptations for vibrational signal detection. Strauß J; Lomas K; Field LH Sci Rep; 2017 May; 7(1):2031. PubMed ID: 28515484 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]