BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 9473052)

  • 1. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC.
    Mack M; van Loon AP; Hohmann HP
    J Bacteriol; 1998 Feb; 180(4):950-5. PubMed ID: 9473052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon.
    Solovieva IM; Kreneva RA; Leak DJ; Perumov DA
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():67-73. PubMed ID: 10206712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mutational analysis of the ribC gene of Bacillus subtilis].
    Karelov DV; Kreneva RA; Érraĭs Lopes L; Perumov DA; Mironov AS
    Genetika; 2011 Jun; 47(6):856-61. PubMed ID: 21866869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning and characterisation of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction.
    Coquard D; Huecas M; Ott M; van Dijl JM; van Loon AP; Hohmann HP
    Mol Gen Genet; 1997 Mar; 254(1):81-4. PubMed ID: 9108293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli.
    Langer S; Hashimoto M; Hobl B; Mathes T; Mack M
    J Bacteriol; 2013 Sep; 195(18):4037-45. PubMed ID: 23836860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavokinase and FAD synthetase from Bacillus subtilis specific for reduced flavins.
    Kearney EB; Goldenberg J; Lipsick J; Perl M
    J Biol Chem; 1979 Oct; 254(19):9551-7. PubMed ID: 226520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory mechanisms of 6,7-dimethyl-8-ribityllumazine formation in resting cells of a riboflavin-adenine-deficient mutant of Bacillus subtilis.
    Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 2005 Aug; 51(4):271-3. PubMed ID: 16262000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probable reaction mechanisms of flavokinase and FAD synthetase from rat liver.
    Yamada Y; Merrill AH; McCormick DB
    Arch Biochem Biophys; 1990 Apr; 278(1):125-30. PubMed ID: 2157358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The riboflavin kinase encoding gene ribR of Bacillus subtilis is a part of a 10 kb operon, which is negatively regulated by the yrzC gene product.
    Solovieva IM; Kreneva RA; Errais Lopes L; Perumov DA
    FEMS Microbiol Lett; 2005 Feb; 243(1):51-8. PubMed ID: 15668000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Multifunctional regulatory mutation in Bacillus subtilis flavinogenesis system].
    Kreneva RA; Karelov DV; Korol'kova NV; Mironov AS; Perumov DA
    Genetika; 2009 Oct; 45(10):1420-4. PubMed ID: 19947554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata.
    Fedorovych DV; Dmytruk KV; Sibirny AA
    Methods Mol Biol; 2021; 2280():15-30. PubMed ID: 33751426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular analysis of riboflavin synthesis genes in Bartonella henselae and use of the ribC gene for differentiation of Bartonella species by PCR.
    Bereswill S; Hinkelmann S; Kist M; Sander A
    J Clin Microbiol; 1999 Oct; 37(10):3159-66. PubMed ID: 10488170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae mitochondria can synthesise FMN and FAD from externally added riboflavin and export them to the extramitochondrial phase.
    Pallotta ML; Brizio C; Fratianni A; De Virgilio C; Barile M; Passarella S
    FEBS Lett; 1998 May; 428(3):245-9. PubMed ID: 9654142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Ashbya gossypii for enhanced FAD production through promoter replacement of FMN1 gene.
    Patel MV; T S C
    Enzyme Microb Technol; 2020 Feb; 133():109455. PubMed ID: 31874696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of FAD synthetase gene from Corynebacterium ammoniagenes and its application to FAD and FMN production.
    Hagihara T; Fujio T; Aisaka K
    Appl Microbiol Biotechnol; 1995 Jan; 42(5):724-9. PubMed ID: 7765913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of key residues at the flavin mononucleotide (FMN):adenylyltransferase catalytic site of the bifunctional riboflavin kinase/flavin adenine dinucleotide (FAD) Synthetase from Corynebacterium ammoniagenes.
    Serrano A; Frago S; Velázquez-Campoy A; Medina M
    Int J Mol Sci; 2012 Nov; 13(11):14492-517. PubMed ID: 23203077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides.
    Iamurri SM; Daugherty AB; Edmondson DE; Lutz S
    Protein Eng Des Sel; 2013 Dec; 26(12):791-5. PubMed ID: 24170887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Primary structure and functional activity of the Bacillus subtilis ribC gene].
    Gusarov II; Kreneva RA; Rybak KV; Podcherniaev DA; Iomantas IuV; Kolibaba LG; Polanuer BM; Kozlov IuI; Perumov DA
    Mol Biol (Mosk); 1997; 31(5):820-5. PubMed ID: 9454067
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of riboflavin status on hepatic activities of flavin-metabolizing enzymes in rats.
    Lee SS; McCormick DB
    J Nutr; 1983 Nov; 113(11):2274-9. PubMed ID: 6138398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.