BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1182 related articles for article (PubMed ID: 9473411)

  • 1. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for red blood cell motion in glycocalyx-lined capillaries.
    Secomb TW; Hsu R; Pries AR
    Am J Physiol; 1998 Mar; 274(3):H1016-22. PubMed ID: 9530216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood flow and red blood cell deformation in nonuniform capillaries: effects of the endothelial surface layer.
    Secomb TW; Hsu R; Pries AR
    Microcirculation; 2002 Jul; 9(3):189-96. PubMed ID: 12080416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poroelastic theory of transcapillary flow: effects of endothelial glycocalyx deterioration.
    Speziale S; Sivaloganathan S
    Microvasc Res; 2009 Dec; 78(3):432-41. PubMed ID: 19664642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvascular rheology and hemodynamics.
    Lipowsky HH
    Microcirculation; 2005; 12(1):5-15. PubMed ID: 15804970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube.
    El-Khatib FH; Damiano ER
    Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change in properties of the glycocalyx affects the shear rate and stress distribution on endothelial cells.
    Wang W
    J Biomech Eng; 2007 Jun; 129(3):324-9. PubMed ID: 17536899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro.
    Potter DR; Damiano ER
    Circ Res; 2008 Apr; 102(7):770-6. PubMed ID: 18258858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels.
    Liu M; Yang J
    Microvasc Res; 2009 Jun; 78(1):14-9. PubMed ID: 19362568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement of a spherical cell in capillaries using a boundary element method.
    Wen PH; Aliabadi MH; Wang W
    J Biomech; 2007; 40(8):1786-93. PubMed ID: 17027993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical models of capillary flow.
    Skalak R
    Blood Cells; 1982; 8(1):147-52. PubMed ID: 7115972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary.
    Ye T; Li H; Lam KY
    Microvasc Res; 2010 Dec; 80(3):453-63. PubMed ID: 20643152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-dependent rheological properties of blood in capillaries.
    Secomb TW
    Microvasc Res; 1987 Jul; 34(1):46-58. PubMed ID: 3657604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of the microcirculation.
    Pries AR; Secomb TW
    Clin Hemorheol Microcirc; 2003; 29(3-4):143-8. PubMed ID: 14724335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular fluid mechanics.
    Kamm RD
    Annu Rev Fluid Mech; 2002; 34():211-32. PubMed ID: 12741392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mathematical model of movement of asymmetrical erythrocyte along the capillary].
    Kisliakov IuA; Kopyl'tsov AV
    Biofizika; 1990; 35(3):473-7. PubMed ID: 2207191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells.
    Secomb TW; Hsu R; Pries AR
    Biorheology; 2001; 38(2-3):143-50. PubMed ID: 11381171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 60.