These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 9473444)

  • 1. Incompatibility properties of tartrate utilization plasmids derived from Agrobacterium vitis strains.
    Szegedi E; Otten L
    Plasmid; 1998; 39(1):35-40. PubMed ID: 9473444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extra repABC locus in the incRh2 Ti plasmid pTiBo542 exerts incompatibility toward an incRh1 plasmid.
    Yamamoto S; Agustina V; Sakai A; Moriguchi K; Suzuki K
    Plasmid; 2017 Mar; 90():20-29. PubMed ID: 28238706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the Agrobacterium octopine-cucumopine catabolic plasmid pAtAg67.
    Hooykaas MJG; Shao S; Hooykaas PJJ
    Plasmid; 2022 May; 121():102629. PubMed ID: 35378144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective removal of a range of Ti/Ri plasmids using a pBBR1-type vector having a repABC operon and a lux reporter system.
    Yamamoto S; Sakai A; Agustina V; Moriguchi K; Suzuki K
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1823-1836. PubMed ID: 29318333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Ti plasmid from the wide host range Agrobacterium vitis strain Tm4: map and homology with other Ti plasmids.
    Otten L; Gérard JC; De Ruffray P
    Plasmid; 1993 Mar; 29(2):154-9. PubMed ID: 8469721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quorum-sensing signal production by Agrobacterium vitis strains and their tumor-inducing and tartrate-catabolic plasmids.
    Lowe N; Gan HM; Chakravartty V; Scott R; Szegedi E; Burr TJ; Savka MA
    FEMS Microbiol Lett; 2009 Jul; 296(1):102-9. PubMed ID: 19459947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence and mutational analysis of a tartrate utilization operon from Agrobacterium vitis.
    Crouzet P; Otten L
    J Bacteriol; 1995 Nov; 177(22):6518-26. PubMed ID: 7592429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and distribution of tartrate utilization genes in the grapevine pathogen Agrobacterium vitis.
    Salomone JY; Crouzet P; De Ruffray P; Otten L
    Mol Plant Microbe Interact; 1996 Jul; 9(5):401-8. PubMed ID: 8672817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The presence and characterization of a virF gene on Agrobacterium vitis Ti plasmids.
    Schrammeijer B; Hemelaar J; Hooykaas PJ
    Mol Plant Microbe Interact; 1998 May; 11(5):429-33. PubMed ID: 9574510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of a conserved DNA region coding for tartrate utilization in Agrobacterium vitis.
    Salomone JY; Otten L
    FEMS Microbiol Lett; 1999 May; 174(2):333-7. PubMed ID: 10339827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid divergence of Agrobacterium vitis octopine-cucumopine Ti plasmids from a recent common ancestor.
    van Nuenen M; de Ruffray P; Otten L
    Mol Gen Genet; 1993 Jul; 240(1):49-57. PubMed ID: 8101965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and specific identification of four Agrobacterium species and biovars using multiplex PCR.
    Puławska J; Willems A; Sobiczewski P
    Syst Appl Microbiol; 2006 Sep; 29(6):470-9. PubMed ID: 16343837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface motility and associated surfactant production in Agrobacterium vitis.
    Süle S; Cursino L; Zheng D; Hoch HC; Burr TJ
    Lett Appl Microbiol; 2009 Nov; 49(5):596-601. PubMed ID: 19780963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel SCAR primers for specific and sensitive detection of Agrobacterium vitis strains.
    Lim SH; Kim JG; Kang HW
    Microbiol Res; 2009; 164(4):451-60. PubMed ID: 17467252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Agrobacterium spp. present within Brassica napus seed by TaqMan PCR--implications for GM screening procedures.
    Weller SA; Simpkins SA; Stead DE; Kurdziel A; Hird H; Weekes RJ
    Arch Microbiol; 2002 Nov; 178(5):338-43. PubMed ID: 12375101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of plasmid-borne and chromosome-encoded traits of Agrobacterium biovar 1, 2, and 3 strains from France.
    Ridé M; Ridé S; Petit A; Bollet C; Dessaux Y; Gardan L
    Appl Environ Microbiol; 2000 May; 66(5):1818-25. PubMed ID: 10788345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology.
    Tzfira T; Citovsky V
    Curr Opin Biotechnol; 2006 Apr; 17(2):147-54. PubMed ID: 16459071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of hup determinants in Rhizobium sp. sesbania.
    Kukreja K; Dogra RC; Sharma PK
    Indian J Exp Biol; 1998 Feb; 36(2):209-12. PubMed ID: 9754053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons.
    Brom S; García-de los Santos A; Cervantes L; Palacios R; Romero D
    Plasmid; 2000 Jul; 44(1):34-43. PubMed ID: 10873525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RepB protein of an Agrobacterium tumefaciens Ti plasmid binds to two adjacent sites between repA and repB for plasmid partitioning and autorepression.
    Chai Y; Winans SC
    Mol Microbiol; 2005 Nov; 58(4):1114-29. PubMed ID: 16262794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.