These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 9473632)
21. Central projections of the normal and 'regenerate' infraorbital nerve in adult rats subjected to neonatal unilateral infraorbital lesions: a transganglionic horseradish peroxidase study. Jacquin MF; Rhoades RW Brain Res; 1983 Jun; 269(1):137-44. PubMed ID: 6603250 [TBL] [Abstract][Full Text] [Related]
22. Structure-function relationships in rat brainstem subnucleus interpolaris. X. Mechanisms underlying enlarged spared whisker projections after infraorbital nerve injury at birth. Jacquin MF; Zahm DS; Henderson TA; Golden JP; Johnson EM; Renehan WE; Klein BG J Neurosci; 1993 Jul; 13(7):2946-64. PubMed ID: 7687282 [TBL] [Abstract][Full Text] [Related]
23. Effects of neonatal axoplasmic transport attenuation on the response properties of vibrissae-sensitive neurons in the trigeminal principal sensory nucleus of the rat. Chiaia NL; Zhang S; Crissman RS; Rhoades RW Somatosens Mot Res; 2000; 17(3):273-83. PubMed ID: 10994597 [TBL] [Abstract][Full Text] [Related]
24. Effect of fetal infraorbital nerve transection upon trigeminal primary afferent projections in the rat. Rhoades RW; Chiaia NL; Macdonald GJ; Jacquin MF J Comp Neurol; 1989 Sep; 287(1):82-97. PubMed ID: 2794125 [TBL] [Abstract][Full Text] [Related]
25. Effects of neonatal attenuation of axoplasmic flow or transection of the rat's infraorbital nerve on the morphology of individual trigeminal primary afferent terminals in the brainstem. Goldstein F; Chiaia NL; Rhoades RW Exp Neurol; 1999 Apr; 156(2):283-93. PubMed ID: 10328936 [TBL] [Abstract][Full Text] [Related]
26. Neonatal transection of the infraorbital nerve increases the expression of proteins related to neuronal death in the principal sensory nucleus of the trigeminal nerve. Miller MW; Kuhn PE Brain Res; 1997 Sep; 769(2):233-44. PubMed ID: 9374191 [TBL] [Abstract][Full Text] [Related]
27. Effects of neonatal infraorbital lesions upon central trigeminal primary afferent projections in rat and hamster. Jacquin MF; Rhoades RW J Comp Neurol; 1985 May; 235(1):129-43. PubMed ID: 3989002 [TBL] [Abstract][Full Text] [Related]
28. Morphological characteristics of low-threshold primary afferents in the trigeminal subnuclei interpolaris and caudalis (the medullary dorsal horn) of the golden hamster. Chiaia NL; Hess PR; Hosoi M; Rhoades RW J Comp Neurol; 1987 Oct; 264(4):527-46. PubMed ID: 3680641 [TBL] [Abstract][Full Text] [Related]
29. The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus. I. Assessment of receptive field changes following thalamic reticular nucleus lesions. Lee SM; Friedberg MH; Ebner FF J Neurophysiol; 1994 May; 71(5):1702-15. PubMed ID: 8064343 [TBL] [Abstract][Full Text] [Related]
30. Development and plasticity in hamster trigeminal primary afferent projections. Jacquin MF; Rhoades RW Brain Res; 1987 Feb; 428(2):161-75. PubMed ID: 3030504 [TBL] [Abstract][Full Text] [Related]
31. The contribution of the principal and spinal trigeminal nuclei to the receptive field properties of thalamic VPM neurons in the rat. Friedberg MH; Lee SM; Ebner FF J Neurocytol; 2004 Jan; 33(1):75-85. PubMed ID: 15173633 [TBL] [Abstract][Full Text] [Related]
32. Response properties of periodontal mechanosensitive neurones in the rat trigeminal sensory complex projecting to the posteromedial ventral nucleus of the thalamus. Tabata T; Takahashi Y; Hayashi H Arch Oral Biol; 2001 Oct; 46(10):881-9. PubMed ID: 11451402 [TBL] [Abstract][Full Text] [Related]
33. Neonatal transection alters the percentage of substance-P-positive trigeminal ganglion cells that contribute axons to the regenerate infraorbital nerve. Enfiejian HJ; Chiaia NL; Macdonald GJ; Rhoades RW Somatosens Mot Res; 1989; 6(5-6):537-52. PubMed ID: 2479198 [TBL] [Abstract][Full Text] [Related]
34. Preventing regeneration of infraorbital axons does not alter the ganglionic or transganglionic consequences of neonatal transection of this trigeminal branch. Chiaia NL; Hess PR; Rhoades RW Brain Res; 1987 Nov; 433(1):75-88. PubMed ID: 3499965 [TBL] [Abstract][Full Text] [Related]
35. Transection of the infraorbital nerve in newborn hamsters alters the somatosensory but not the visual representation in the superior colliculus. Mooney RD; Nikoletseas MM; Rhoades RW J Comp Neurol; 1987 Dec; 266(1):27-44. PubMed ID: 2448350 [TBL] [Abstract][Full Text] [Related]
36. Apoptotic cascade of neurons in the subcortical sensory relay nuclei following the neonatal infraorbital nerve transection. Sugimoto T; Xiao C; Takeyama A; He YF; Takano-Yamamoto T; Ichikawa H Brain Res; 1999 Apr; 824(2):284-90. PubMed ID: 10196460 [TBL] [Abstract][Full Text] [Related]
37. Response characteristics of lamb pontine neurons to stimulation of the oral cavity and epiglottis with different sensory modalities. Sweazey RD; Bradley RM J Neurophysiol; 1993 Sep; 70(3):1168-80. PubMed ID: 8229166 [TBL] [Abstract][Full Text] [Related]
38. Development of terminals and synapses in laminae I and II of the rat medullary dorsal horn after infraorbital nerve transection at birth. Golden JP; Demaro JA; Robinson PL; Jacquin MF J Comp Neurol; 1997 Jul; 383(3):339-48. PubMed ID: 9205045 [TBL] [Abstract][Full Text] [Related]
39. Corticofugal influences in the rat on responses of neurons in the trigeminal nucleus interpolaris to mechanical stimulation. Woolston DC; La Londe JR; Gibson JM Neurosci Lett; 1983 Mar; 36(1):43-8. PubMed ID: 6856202 [TBL] [Abstract][Full Text] [Related]