BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9473842)

  • 1. Using evoked EMG as a synthetic force sensor of isometric electrically stimulated muscle.
    Erfanian A; Chizeck HJ; Hashemi RM
    IEEE Trans Biomed Eng; 1998 Feb; 45(2):188-202. PubMed ID: 9473842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation.
    Hayashibe M; Zhang Q; Guiraud D; Fattal C
    J Neural Eng; 2011 Dec; 8(6):064001. PubMed ID: 21975831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting fatigue during electrically stimulated non-isometric contractions.
    Marion MS; Wexler AS; Hull ML
    Muscle Nerve; 2010 Jun; 41(6):857-67. PubMed ID: 20229581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically evoked myoelectric signals.
    Merletti R; Knaflitz M; DeLuca CJ
    Crit Rev Biomed Eng; 1992; 19(4):293-340. PubMed ID: 1563271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recursive parameter identification of constrained systems: an application to electrically stimulated muscle.
    Chia TL; Chow PC; Chizeck HJ
    IEEE Trans Biomed Eng; 1991 May; 38(5):429-42. PubMed ID: 1874525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards optimal multi-channel EMG electrode configurations in muscle force estimation: a high density EMG study.
    Staudenmann D; Kingma I; Stegeman DF; van Dieën JH
    J Electromyogr Kinesiol; 2005 Feb; 15(1):1-11. PubMed ID: 15642649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human movement onset detection from isometric force and torque measurements: a supervised pattern recognition approach.
    Soda P; Mazzoleni S; Cavallo G; Guglielmelli E; Iannello G
    Artif Intell Med; 2010 Sep; 50(1):55-61. PubMed ID: 20510593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time estimation of FES-induced joint torque with evoked EMG : Application to spinal cord injured patients.
    Li Z; Guiraud D; Andreu D; Benoussaad M; Fattal C; Hayashibe M
    J Neuroeng Rehabil; 2016 Jun; 13(1):60. PubMed ID: 27334441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrode characterization for functional application to upper extremity FNS.
    Kilgore KL; Peckham PH; Keith MW; Thrope GB
    IEEE Trans Biomed Eng; 1990 Jan; 37(1):12-21. PubMed ID: 2154398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of electrode placement and innervation zone location on the electromyographic amplitude and mean power frequency versus isometric torque relationships for the vastus lateralis muscle.
    Beck TW; Housh TJ; Cramer JT; Weir JP
    J Electromyogr Kinesiol; 2008 Apr; 18(2):317-28. PubMed ID: 17174107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of average muscle fiber conduction velocity from two-dimensional surface EMG recordings.
    Farina D; Merletti R
    J Neurosci Methods; 2004 Apr; 134(2):199-208. PubMed ID: 15003386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals.
    Farina D; Févotte C; Doncarli C; Merletti R
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1555-67. PubMed ID: 15376504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of electrode shift over the innervation zone and normalization on the electromyographic amplitude and mean power frequency versus isometric torque relationships for the vastus medialis muscle.
    Beck TW; Housh TJ; Cramer JT; Mielke M; Hendrix R
    J Neurosci Methods; 2008 Mar; 169(1):100-8. PubMed ID: 18191207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA; Joosten A; Harlaar J
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of joint moments using a neural network model of muscle activations from EMG signals.
    Wang L; Buchanan TS
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):30-7. PubMed ID: 12173737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface electromyography and muscle force: limits in sEMG-force relationship and new approaches for applications.
    Disselhorst-Klug C; Schmitz-Rode T; Rau G
    Clin Biomech (Bristol, Avon); 2009 Mar; 24(3):225-35. PubMed ID: 18849097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle.
    Hunt KJ; Munih M; Donaldson NN; Barr FM
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):998-1009. PubMed ID: 9691574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach for estimating muscle fiber conduction velocity by spatial and temporal filtering of surface EMG signals.
    Farina D; Merletti R
    IEEE Trans Biomed Eng; 2003 Dec; 50(12):1340-51. PubMed ID: 14656063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.