These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 9473997)

  • 1. Mass and mass distribution of below-knee prostheses: effect on gait efficacy and self-selected walking speed.
    Lehmann JF; Price R; Okumura R; Questad K; de Lateur BJ; NĂ©gretot A
    Arch Phys Med Rehabil; 1998 Feb; 79(2):162-8. PubMed ID: 9473997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy expenditure and gait characteristics of a bilateral amputee walking with C-leg prostheses compared with stubby and conventional articulating prostheses.
    Perry J; Burnfield JM; Newsam CJ; Conley P
    Arch Phys Med Rehabil; 2004 Oct; 85(10):1711-7. PubMed ID: 15468036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of walking speed and prosthetic knee control type on external mechanical work in transfemoral prosthesis users.
    Pinhey SR; Murata H; Hisano G; Ichimura D; Hobara H; Major MJ
    J Biomech; 2022 Mar; 134():110984. PubMed ID: 35182901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shock absorption during transtibial amputee gait: Does longitudinal prosthetic stiffness play a role?
    Boutwell E; Stine R; Gard S
    Prosthet Orthot Int; 2017 Apr; 41(2):178-185. PubMed ID: 27117010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing stiffness of shock-absorbing pylon amplifies prosthesis energy loss and redistributes joint mechanical work during walking.
    Maun JA; Gard SA; Major MJ; Takahashi KZ
    J Neuroeng Rehabil; 2021 Sep; 18(1):143. PubMed ID: 34548080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of prosthetic mass distribution on the spatiotemporal characteristics and knee kinematics of transfemoral amputee locomotion.
    Hekmatfard M; Farahmand F; Ebrahimi I
    Gait Posture; 2013 Jan; 37(1):78-81. PubMed ID: 22832472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning.
    Shell CE; Segal AD; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():56-63. PubMed ID: 28869812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control.
    Datta D; Heller B; Howitt J
    Clin Rehabil; 2005 Jun; 19(4):398-403. PubMed ID: 15929508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of below-knee child amputee gait: SACH foot versus Flex foot.
    Schneider K; Hart T; Zernicke RF; Setoguchi Y; Oppenheim W
    J Biomech; 1993 Oct; 26(10):1191-204. PubMed ID: 8253824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.
    Wezenberg D; Cutti AG; Bruno A; Houdijk H
    J Rehabil Res Dev; 2014; 51(10):1579-90. PubMed ID: 25860285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D intersegmental knee loading in below-knee amputees across steady-state walking speeds.
    Fey NP; Neptune RR
    Clin Biomech (Bristol, Avon); 2012 May; 27(4):409-14. PubMed ID: 22138437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of gait between young adults fitted with the space foot and nondisabled persons.
    Prince F; Allard P; McFadyen BJ; Aissaoui R
    Arch Phys Med Rehabil; 1993 Dec; 74(12):1369-76. PubMed ID: 8259907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An above-knee prosthesis with a system of energy recovery: a technical note.
    Farber BS; Jacobson JS
    J Rehabil Res Dev; 1995 Nov; 32(4):337-48. PubMed ID: 8770798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual standard deviation: Validation of a new measure of dual-task cost in below-knee prosthesis users.
    Howard CL; Wallace C; Abbas J; Stokic DS
    Gait Posture; 2017 Jan; 51():91-96. PubMed ID: 27728877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking.
    Caputo JM; Collins SH
    Sci Rep; 2014 Dec; 4():7213. PubMed ID: 25467389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.