These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 9474729)
1. Three-dimensional flexibility characteristics of the human cervical spine in vivo. McClure P; Siegler S; Nobilini R Spine (Phila Pa 1976); 1998 Jan; 23(2):216-23. PubMed ID: 9474729 [TBL] [Abstract][Full Text] [Related]
2. Kinematics of the upper cervical spine in rotation: in vivo three-dimensional analysis. Ishii T; Mukai Y; Hosono N; Sakaura H; Nakajima Y; Sato Y; Sugamoto K; Yoshikawa H Spine (Phila Pa 1976); 2004 Apr; 29(7):E139-44. PubMed ID: 15087810 [TBL] [Abstract][Full Text] [Related]
3. A method to simulate in vivo cervical spine kinematics using in vitro compressive preload. Miura T; Panjabi MM; Cripton PA Spine (Phila Pa 1976); 2002 Jan; 27(1):43-8. PubMed ID: 11805634 [TBL] [Abstract][Full Text] [Related]
4. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547 [TBL] [Abstract][Full Text] [Related]
5. Normal functional range of motion of the cervical spine during 15 activities of daily living. Bible JE; Biswas D; Miller CP; Whang PG; Grauer JN J Spinal Disord Tech; 2010 Feb; 23(1):15-21. PubMed ID: 20051924 [TBL] [Abstract][Full Text] [Related]
6. Kinematic magnetic resonance imaging of the upper cervical spine using a novel positioning device. Karhu JO; Parkkola RK; Komu ME; Kormano MJ; Koskinen SK Spine (Phila Pa 1976); 1999 Oct; 24(19):2046-56. PubMed ID: 10528383 [TBL] [Abstract][Full Text] [Related]
7. [IN VIVO THREE-DIMENSIONAL TRANSIENT MOTION CHARACTERISTICS OF THE SUBAXIAL CERVICAL SPINE IN HEALTHY ADULTS]. Li H; Xia Q; Bai J; Miao J; Liu J; Wei D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Dec; 29(12):1494-9. PubMed ID: 27044217 [TBL] [Abstract][Full Text] [Related]
8. Moment arms of the human neck muscles in flexion, bending and rotation. Ackland DC; Merritt JS; Pandy MG J Biomech; 2011 Feb; 44(3):475-86. PubMed ID: 21074159 [TBL] [Abstract][Full Text] [Related]
9. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Panjabi MM; Crisco JJ; Vasavada A; Oda T; Cholewicki J; Nibu K; Shin E Spine (Phila Pa 1976); 2001 Dec; 26(24):2692-700. PubMed ID: 11740357 [TBL] [Abstract][Full Text] [Related]
10. Intervertebral kinematics of the cervical spine before, during, and after high-velocity low-amplitude manipulation. Anderst WJ; Gale T; LeVasseur C; Raj S; Gongaware K; Schneider M Spine J; 2018 Dec; 18(12):2333-2342. PubMed ID: 30142458 [TBL] [Abstract][Full Text] [Related]
11. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry. Zafarparandeh I; Erbulut DU; Ozer AF Proc Inst Mech Eng H; 2016 Jul; 230(7):700-6. PubMed ID: 27107032 [TBL] [Abstract][Full Text] [Related]
12. Cervical motion segment contributions to head motion during flexion\extension, lateral bending, and axial rotation. Anderst WJ; Donaldson WF; Lee JY; Kang JD Spine J; 2015 Dec; 15(12):2538-43. PubMed ID: 26334229 [TBL] [Abstract][Full Text] [Related]
13. Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis. Ishii T; Mukai Y; Hosono N; Sakaura H; Fujii R; Nakajima Y; Tamura S; Sugamoto K; Yoshikawa H Spine (Phila Pa 1976); 2004 Dec; 29(24):2826-31. PubMed ID: 15599286 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading. Anderst WJ; Donaldson WF; Lee JY; Kang JD J Biomech; 2015 May; 48(7):1286-93. PubMed ID: 25814180 [TBL] [Abstract][Full Text] [Related]
15. Intervertebral range of motion characteristics of normal cervical spinal segments (C0-T1) during in vivo neck motions. Zhou C; Wang H; Wang C; Tsai TY; Yu Y; Ostergaard P; Li G; Cha T J Biomech; 2020 Jan; 98():109418. PubMed ID: 31653508 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. Gonzalez-Blohm SA; Doulgeris JJ; Aghayev K; Lee WE; Volkov A; Vrionis FD J Neurosurg Spine; 2014 Feb; 20(2):209-19. PubMed ID: 24286528 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional isometric strength of neck muscles in humans. Vasavada AN; Li S; Delp SL Spine (Phila Pa 1976); 2001 Sep; 26(17):1904-9. PubMed ID: 11568704 [TBL] [Abstract][Full Text] [Related]
18. Are sheep spines a valid biomechanical model for human spines? Wilke HJ; Kettler A; Claes LE Spine (Phila Pa 1976); 1997 Oct; 22(20):2365-74. PubMed ID: 9355217 [TBL] [Abstract][Full Text] [Related]
19. In vitro flexibility of the cervical spine after ventral uncoforaminotomy. Laboratory investigation. Schmieder K; Kettner A; Brenke C; Harders A; Pechlivanis I; Wilke HJ J Neurosurg Spine; 2007 Nov; 7(5):537-41. PubMed ID: 17977196 [TBL] [Abstract][Full Text] [Related]
20. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament. McAfee PC; Cunningham B; Dmitriev A; Hu N; Woo Kim S; Cappuccino A; Pimenta L Spine (Phila Pa 1976); 2003 Oct; 28(20):S176-85. PubMed ID: 14560189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]