BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 9474775)

  • 1. Non-Mendelian transmission of apomixis in maize-Tripsacum hybrids caused by a transmission ratio distortion.
    Grimanelli D; Leblanc O; Espinosa E; Perotti E; González de León D; Savidan Y
    Heredity (Edinb); 1998 Jan; 80 ( Pt 1)():40-7. PubMed ID: 9474775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes?
    Grimanelli D; Leblanc O; Espinosa E; Perotti E; González de León D; Savidan Y
    Heredity (Edinb); 1998 Jan; 80 ( Pt 1)():33-9. PubMed ID: 9474774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assignment of a gene(s) conferring apomixis in Tripsacum to a chromosome arm: cytological and molecular evidence.
    Kindiger B; Bai D; Sokolov V
    Genome; 1996 Dec; 39(6):1133-41. PubMed ID: 8983184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers.
    Leblanc O; Grimanelli D; González-de-León D; Savidan Y
    Theor Appl Genet; 1995 Jun; 90(7-8):1198-203. PubMed ID: 24173084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apomixis in Tripsacum: comparative mapping of a multigene phenomenon.
    Blakey CA; Goldman SL; Dewald CL
    Genome; 2001 Apr; 44(2):222-30. PubMed ID: 11341732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Chromosome control of apomixis in maize-gamagrass hybrids].
    Belova IV; Tarakanova TK; Abdyrakhmanova EA; Sokolov VA; Panikhin PA
    Genetika; 2010 Sep; 46(9):1188-91. PubMed ID: 21061615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seed development and inheritance studies in apomictic maize-Tripsacum hybrids reveal barriers for the transfer of apomixis into sexual crops.
    Leblanc O; Grimanelli D; Hernandez-Rodriguez M; Galindo PA; Soriano-Martinez AM; Perotti E
    Int J Dev Biol; 2009; 53(4):585-96. PubMed ID: 19247928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allopolyploidization facilitates gene flow and speciation among corn, Zea perennis and Tripsacum dactyloides.
    Iqbal MZ; Cheng M; Su Y; Li Y; Jiang W; Li H; Zhao Y; Wen X; Zhang L; Ali A; Rong T; Tang Q
    Planta; 2019 Jun; 249(6):1949-1962. PubMed ID: 30895446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterochronic expression of sexual reproductive programs during apomictic development in Tripsacum.
    Grimanelli D; García M; Kaszas E; Perotti E; Leblanc O
    Genetics; 2003 Nov; 165(3):1521-31. PubMed ID: 14668399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asexual reproduction through seeds: the complex case of diplosporous apomixis.
    Cornaro L; Banfi C; Cucinotta M; Colombo L; van Dijk PJ
    J Exp Bot; 2023 Apr; 74(8):2462-2478. PubMed ID: 36794770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes.
    Garcia-Aguilar M; Michaud C; Leblanc O; Grimanelli D
    Plant Cell; 2010 Oct; 22(10):3249-67. PubMed ID: 21037104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis.
    Van Dijk PJ; Tas IC; Falque M; Bakx-Schotman T
    Heredity (Edinb); 1999 Dec; 83 ( Pt 6)():715-21. PubMed ID: 10651916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis.
    Tas IC; Van Dijk PJ
    Heredity (Edinb); 1999 Dec; 83 ( Pt 6)():707-14. PubMed ID: 10651915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental genetics of gametophytic apomixis.
    Grimanelli D; Leblanc O; Perotti E; Grossniklaus U
    Trends Genet; 2001 Oct; 17(10):597-604. PubMed ID: 11585667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms.
    Bicknell RA; Borst NK; Koltunow AM
    Heredity (Edinb); 2000 Feb; 84 ( Pt 2)():228-37. PubMed ID: 10762393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spread of infectious asexuality through haploid pollen.
    Mau M; Liiving T; Fomenko L; Goertzen R; Paczesniak D; Böttner L; Sharbel TF
    New Phytol; 2021 Apr; 230(2):804-820. PubMed ID: 33421128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modes of inheritance of two apomixis components, diplospory and parthenogenesis, in Chinese chive (Allium ramosum) revealed by analysis of the segregating population generated by back-crossing between amphimictic and apomictic diploids.
    Yamashita K; Nakazawa Y; Namai K; Amagai M; Tsukazaki H; Wako T; Kojima A
    Breed Sci; 2012 Jun; 62(2):160-9. PubMed ID: 23136527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segregation for sexual seed production in Paspalum as directed by male gametes of apomictic triploid plants.
    Martínez EJ; Acuña CA; Hojsgaard DH; Tcach MA; Quarin CL
    Ann Bot; 2007 Dec; 100(6):1239-47. PubMed ID: 17766843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum officinale, s.l.) is controlled by a sex-specific dominant locus.
    van Dijk PJ; Bakx-Schotman JM
    Genetics; 2004 Jan; 166(1):483-92. PubMed ID: 15020437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic control of apomixis: asexual seed formation.
    Hand ML; Koltunow AM
    Genetics; 2014 Jun; 197(2):441-50. PubMed ID: 24939990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.