BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9475335)

  • 1. A roadmap for HLA-DR peptide binding specificities.
    Chelvanayagam G
    Hum Immunol; 1997 Dec; 58(2):61-9. PubMed ID: 9475335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A roadmap for HLA-A, HLA-B, and HLA-C peptide binding specificities.
    Chelvanayagam G
    Immunogenetics; 1996; 45(1):15-26. PubMed ID: 8881033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide binding predictions for HLA DR, DP and DQ molecules.
    Wang P; Sidney J; Kim Y; Sette A; Lund O; Nielsen M; Peters B
    BMC Bioinformatics; 2010 Nov; 11():568. PubMed ID: 21092157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide binding motifs and specificities for HLA-DQ molecules.
    Baas A; Gao X; Chelvanayagam G
    Immunogenetics; 1999 Oct; 50(1-2):8-15. PubMed ID: 10541801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan.
    Nielsen M; Lundegaard C; Blicher T; Peters B; Sette A; Justesen S; Buus S; Lund O
    PLoS Comput Biol; 2008 Jul; 4(7):e1000107. PubMed ID: 18604266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes.
    Bordner AJ; Mittelmann HD
    BMC Bioinformatics; 2010 Sep; 11():482. PubMed ID: 20868497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promiscuous and allele-specific anchors in HLA-DR-binding peptides.
    Hammer J; Valsasnini P; Tolba K; Bolin D; Higelin J; Takacs B; Sinigaglia F
    Cell; 1993 Jul; 74(1):197-203. PubMed ID: 8334703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores.
    Salomon J; Flower DR
    BMC Bioinformatics; 2006 Nov; 7():501. PubMed ID: 17105666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Naturally processed peptides from two disease-resistance-associated HLA-DR13 alleles show related sequence motifs and the effects of the dimorphism at position 86 of the HLA-DR beta chain.
    Davenport MP; Quinn CL; Chicz RM; Green BN; Willis AC; Lane WS; Bell JI; Hill AV
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6567-71. PubMed ID: 7604034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-peptides from four HLA-DR alleles share hydrophobic anchor residues near the NH2-terminal including proline as a stop signal for trimming.
    Kropshofer H; Max H; Halder T; Kalbus M; Muller CA; Kalbacher H
    J Immunol; 1993 Nov; 151(9):4732-42. PubMed ID: 8409432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of HLA-DR52c: comparison to other HLA-DRB3 alleles.
    Dai S; Crawford F; Marrack P; Kappler JW
    Proc Natl Acad Sci U S A; 2008 Aug; 105(33):11893-7. PubMed ID: 18697946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules.
    Zhang L; Chen Y; Wong HS; Zhou S; Mamitsuka H; Zhu S
    PLoS One; 2012; 7(2):e30483. PubMed ID: 22383964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Utility of Supertype Clustering in Prediction for Class II MHC-Peptide Binding.
    Shen WJ; Zhang X; Zhang S; Liu C; Cui W
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30463372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self and foreign peptides interact with intact and disassembled MHC class II antigen HLA-DR via tryptophan pockets.
    Kropshofer H; Bohlinger I; Max H; Kalbacher H
    Biochemistry; 1991 Sep; 30(38):9177-87. PubMed ID: 1892827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides.
    Vogt AB; Kropshofer H; Kalbacher H; Kalbus M; Rammensee HG; Coligan JE; Martin R
    J Immunol; 1994 Aug; 153(4):1665-73. PubMed ID: 7519208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The binding of antigenic peptides to HLA-DR is influenced by interactions between pocket 6 and pocket 9.
    James EA; Moustakas AK; Bui J; Nouv R; Papadopoulos GK; Kwok WW
    J Immunol; 2009 Sep; 183(5):3249-58. PubMed ID: 19648278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Susceptibility to anti-glomerular basement membrane disease is strongly associated with HLA-DRB1 genes.
    Fisher M; Pusey CD; Vaughan RW; Rees AJ
    Kidney Int; 1997 Jan; 51(1):222-9. PubMed ID: 8995737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of functional HLA-DR*1101 tetramers receptive for loading with pathogen- or tumour-derived synthetic peptides.
    Moro M; Cecconi V; Martinoli C; Dallegno E; Giabbai B; Degano M; Glaichenhaus N; Protti MP; Dellabona P; Casorati G
    BMC Immunol; 2005 Dec; 6():24. PubMed ID: 16329759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Several common HLA-DR types share largely overlapping peptide binding repertoires.
    Southwood S; Sidney J; Kondo A; del Guercio MF; Appella E; Hoffman S; Kubo RT; Chesnut RW; Grey HM; Sette A
    J Immunol; 1998 Apr; 160(7):3363-73. PubMed ID: 9531296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide motif for the rat MHC class II molecule RT1.Da: similarities to the multiple sclerosis-associated HLA-DRB1*1501 molecule.
    Duyar H; Dengjel J; de Graaf KL; Wiesmüller KH; Stevanović S; Weissert R
    Immunogenetics; 2005 Apr; 57(1-2):69-76. PubMed ID: 15711804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.