These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 9475721)

  • 1. Evidence for independent mismatch repair processing on opposite sides of a double-strand break in Saccharomyces cerevisiae.
    Weng YS; Nickoloff JA
    Genetics; 1998 Jan; 148(1):59-70. PubMed ID: 9475721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae.
    Clikeman JA; Wheeler SL; Nickoloff JA
    Genetics; 2001 Apr; 157(4):1481-91. PubMed ID: 11290705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and repair of heteroduplex DNA on both sides of the double-strand break during mammalian gene targeting.
    Li J; Baker MD
    J Mol Biol; 2000 Jan; 295(3):505-16. PubMed ID: 10623542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A test of the double-strand break repair model for meiotic recombination in Saccharomyces cerevisiae.
    Gilbertson LA; Stahl FW
    Genetics; 1996 Sep; 144(1):27-41. PubMed ID: 8878671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity.
    Sweetser DB; Hough H; Whelden JF; Arbuckle M; Nickoloff JA
    Mol Cell Biol; 1994 Jun; 14(6):3863-75. PubMed ID: 8196629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination.
    McDonald JP; Rothstein R
    Genetics; 1994 Jun; 137(2):393-405. PubMed ID: 8070653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marker structure and recombination substrate environment influence conversion preference of broken and unbroken alleles in Saccharomyces cerevisiae.
    Weng Y; Barton SL; Cho JW; Nickoloff JA
    Mol Genet Genomics; 2001 May; 265(3):461-8. PubMed ID: 11405629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a small palindrome genetic marker to investigate mechanisms of double-strand-break repair in mammalian cells.
    Li J; Baker MD
    Genetics; 2000 Mar; 154(3):1281-9. PubMed ID: 10757769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast.
    Nickoloff JA; Sweetser DB; Clikeman JA; Khalsa GJ; Wheeler SL
    Genetics; 1999 Oct; 153(2):665-79. PubMed ID: 10511547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The conversion gradient at HIS4 of Saccharomyces cerevisiae. I. Heteroduplex rejection and restoration of Mendelian segregation.
    Hillers KJ; Stahl FW
    Genetics; 1999 Oct; 153(2):555-72. PubMed ID: 10511539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene-conversion tract directionality is influenced by the chromosome environment.
    Cho JW; Khalsa GJ; Nickoloff JA
    Curr Genet; 1998 Oct; 34(4):269-79. PubMed ID: 9799360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-strand break-induced mitotic gene conversion: examination of tract polarity and products of multiple recombinational repair events.
    Weng YS; Whelden J; Gunn L; Nickoloff JA
    Curr Genet; 1996 Mar; 29(4):335-43. PubMed ID: 8598054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous and double-strand break repair-associated quasipalindrome and frameshift mutagenesis in budding yeast: role of mismatch repair.
    Sugawara N; Towne MJ; Lovett ST; Haber JE
    Genetics; 2024 Jul; 227(3):. PubMed ID: 38691577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast.
    Haber JE; Ray BL; Kolb JM; White CI
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3363-7. PubMed ID: 8475081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrequent co-conversion of markers flanking a meiotic recombination initiation site in Saccharomyces cerevisiae.
    Jessop L; Allers T; Lichten M
    Genetics; 2005 Mar; 169(3):1353-67. PubMed ID: 15654098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of mammalian gene replacement is consistent with the formation of long regions of heteroduplex DNA associated with two crossing-over events.
    Li J; Read LR; Baker MD
    Mol Cell Biol; 2001 Jan; 21(2):501-10. PubMed ID: 11134338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of terminal nonhomology and homeology on double-strand-break-induced gene conversion tract directionality.
    Nelson HH; Sweetser DB; Nickoloff JA
    Mol Cell Biol; 1996 Jun; 16(6):2951-7. PubMed ID: 8649406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells.
    Deng WP; Nickoloff JA
    Mol Cell Biol; 1994 Jan; 14(1):400-6. PubMed ID: 8264607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion-type and restoration-type repair of DNA mismatches formed during meiotic recombination in Saccharomyces cerevisiae.
    Kirkpatrick DT; Dominska M; Petes TD
    Genetics; 1998 Aug; 149(4):1693-705. PubMed ID: 9691029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of recombination between homologous and diverged DNAs by double-strand gaps and breaks and role of mismatch repair.
    Priebe SD; Westmoreland J; Nilsson-Tillgren T; Resnick MA
    Mol Cell Biol; 1994 Jul; 14(7):4802-14. PubMed ID: 8007979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.