These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 9475721)

  • 21. Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast.
    Nag DK; White MA; Petes TD
    Nature; 1989 Jul; 340(6231):318-20. PubMed ID: 2546083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitotic sectored colonies: evidence of heteroduplex DNA formation during direct repeat recombination.
    Ronne H; Rothstein R
    Proc Natl Acad Sci U S A; 1988 Apr; 85(8):2696-700. PubMed ID: 3282237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular structures of crossover and noncrossover intermediates during gap repair in yeast: implications for recombination.
    Mitchel K; Zhang H; Welz-Voegele C; Jinks-Robertson S
    Mol Cell; 2010 Apr; 38(2):211-22. PubMed ID: 20417600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication.
    Malkova A; Ivanov EL; Haber JE
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):7131-6. PubMed ID: 8692957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae.
    Ray BL; White CI; Haber JE
    Mol Cell Biol; 1991 Oct; 11(10):5372-80. PubMed ID: 1922052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination.
    Sugawara N; Pâques F; Colaiácovo M; Haber JE
    Proc Natl Acad Sci U S A; 1997 Aug; 94(17):9214-9. PubMed ID: 9256462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A 140-bp-long palindromic sequence induces double-strand breaks during meiosis in the yeast Saccharomyces cerevisiae.
    Nag DK; Kurst A
    Genetics; 1997 Jul; 146(3):835-47. PubMed ID: 9215890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repair of specific base pair mismatches formed during meiotic recombination in the yeast Saccharomyces cerevisiae.
    Detloff P; Sieber J; Petes TD
    Mol Cell Biol; 1991 Feb; 11(2):737-45. PubMed ID: 1990280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patterns of heteroduplex formation associated with the initiation of meiotic recombination in the yeast Saccharomyces cerevisiae.
    Merker JD; Dominska M; Petes TD
    Genetics; 2003 Sep; 165(1):47-63. PubMed ID: 14504217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mismatch repair by efficient nick-directed, and less efficient mismatch-specific, mechanisms in homologous recombination intermediates in Chinese hamster ovary cells.
    Miller EM; Hough HL; Cho JW; Nickoloff JA
    Genetics; 1997 Oct; 147(2):743-53. PubMed ID: 9335609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1.
    Sugawara N; Goldfarb T; Studamire B; Alani E; Haber JE
    Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9315-20. PubMed ID: 15199178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The large loop repair and mismatch repair pathways of Saccharomyces cerevisiae act on distinct substrates during meiosis.
    Jensen LE; Jauert PA; Kirkpatrick DT
    Genetics; 2005 Jul; 170(3):1033-43. PubMed ID: 15879514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poorly repaired mismatches in heteroduplex DNA are hyper-recombinagenic in Saccharomyces cerevisiae.
    Manivasakam P; Rosenberg SM; Hastings PJ
    Genetics; 1996 Feb; 142(2):407-16. PubMed ID: 8852840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.
    Paffett KS; Clikeman JA; Palmer S; Nickoloff JA
    DNA Repair (Amst); 2005 Jun; 4(6):687-98. PubMed ID: 15878310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coconversion of flanking sequences with homothallic switching.
    McGill C; Shafer B; Strathern J
    Cell; 1989 May; 57(3):459-67. PubMed ID: 2541914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Meiotic instability of human minisatellite CEB1 in yeast requires DNA double-strand breaks.
    Debrauwère H; Buard J; Tessier J; Aubert D; Vergnaud G; Nicolas A
    Nat Genet; 1999 Nov; 23(3):367-71. PubMed ID: 10545956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of a double-marker shuttle vector to study DNA double-strand break repair in wild-type and radiation-sensitive mutants of the yeast Saccharomyces cerevisiae.
    Jha B; Ahne F; Eckardt-Schupp F
    Curr Genet; 1993; 23(5-6):402-7. PubMed ID: 8319296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel PMS1 alleles preferentially affect the repair of primer strand loops during DNA replication.
    Erdeniz N; Dudley S; Gealy R; Jinks-Robertson S; Liskay RM
    Mol Cell Biol; 2005 Nov; 25(21):9221-31. PubMed ID: 16227575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene conversion tracts in Saccharomyces cerevisiae can be extremely short and highly directional.
    Palmer S; Schildkraut E; Lazarin R; Nguyen J; Nickoloff JA
    Nucleic Acids Res; 2003 Feb; 31(4):1164-73. PubMed ID: 12582235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes.
    Kramer B; Kramer W; Williamson MS; Fogel S
    Mol Cell Biol; 1989 Oct; 9(10):4432-40. PubMed ID: 2685551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.