BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 9475753)

  • 1. Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice.
    Chen M; SanMiguel P; Bennetzen JL
    Genetics; 1998 Jan; 148(1):435-43. PubMed ID: 9475753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes.
    Chen M; SanMiguel P; de Oliveira AC; Woo SS; Zhang H; Wing RA; Bennetzen JL
    Proc Natl Acad Sci U S A; 1997 Apr; 94(7):3431-5. PubMed ID: 9096411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The colinearity of the Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the triticeae.
    Li W; Gill BS
    Genetics; 2002 Mar; 160(3):1153-62. PubMed ID: 11901130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The maize genome contains a helitron insertion.
    Lal SK; Giroux MJ; Brendel V; Vallejos CE; Hannah LC
    Plant Cell; 2003 Feb; 15(2):381-91. PubMed ID: 12566579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted analysis of orthologous phytochrome A regions of the sorghum, maize, and rice genomes using comparative gene-island sequencing.
    Morishige DT; Childs KL; Moore LD; Mullet JE
    Plant Physiol; 2002 Dec; 130(4):1614-25. PubMed ID: 12481045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hybaid Lecture. Microcollinearity and segmental duplication in the evolution of grass nuclear genomes.
    Bennetzen JL; SanMiguel P; Liu CN; Chen M; Tikhonov A; Costa de Oliveira A; Jin YK; Avramova Z; Woo SS; Zhang H; Wing RA
    Symp Soc Exp Biol; 1996; 50():1-3. PubMed ID: 9039427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix attachment regions and structural colinearity in the genomes of two grass species.
    Avramova Z; Tikhonov A; Chen M; Bennetzen JL
    Nucleic Acids Res; 1998 Feb; 26(3):761-7. PubMed ID: 9443968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rice R gene family: two distinct subfamilies containing several miniature inverted-repeat transposable elements.
    Hu J; Reddy VS; Wessler SR
    Plant Mol Biol; 2000 Mar; 42(5):667-78. PubMed ID: 10809440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses.
    Bureau TE; Wessler SR
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1411-5. PubMed ID: 8108422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthologous comparisons of the Hd1 region across genera reveal Hd1 gene lability within diploid Oryza species and disruptions to microsynteny in Sorghum.
    Sanyal A; Ammiraju JS; Lu F; Yu Y; Rambo T; Currie J; Kollura K; Kim HR; Chen J; Ma J; San Miguel P; Mingsheng C; Wing RA; Jackson SA
    Mol Biol Evol; 2010 Nov; 27(11):2487-506. PubMed ID: 20522726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The complete sequence of 340 kb of DNA around the rice Adh1-adh2 region reveals interrupted colinearity with maize chromosome 4.
    Tarchini R; Biddle P; Wineland R; Tingey S; Rafalski A
    Plant Cell; 2000 Mar; 12(3):381-91. PubMed ID: 10715324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum.
    Swigonová Z; Bennetzen JL; Messing J
    Genetics; 2005 Feb; 169(2):891-906. PubMed ID: 15489523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene identification in a complex chromosomal continuum by local genomic cross-referencing.
    Avramova Z; Tikhonov A; SanMiguel P; Jin YK; Liu C; Woo SS; Wing RA; Bennetzen JL
    Plant J; 1996 Dec; 10(6):1163-8. PubMed ID: 9011097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational finishing of large sequence contigs reveals interspersed nested repeats and gene islands in the rf1-associated region of maize.
    Kronmiller BA; Wise RP
    Plant Physiol; 2009 Oct; 151(2):483-95. PubMed ID: 19675151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses.
    Wang Q; Dooner HK
    Plant J; 2012 Oct; 72(2):212-21. PubMed ID: 22621343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum.
    Jiang SY; Ramachandran S
    PLoS One; 2013; 8(7):e71118. PubMed ID: 23923055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverged copies of the seed regulatory Opaque-2 gene by a segmental duplication in the progenitor genome of rice, sorghum, and maize.
    Xu JH; Messing J
    Mol Plant; 2008 Sep; 1(5):760-9. PubMed ID: 19825579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mosaic organization of orthologous sequences in grass genomes.
    Song R; Llaca V; Messing J
    Genome Res; 2002 Oct; 12(10):1549-55. PubMed ID: 12368247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fertility restorer locus Rf1 [corrected] of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12.
    Klein RR; Klein PE; Mullet JE; Minx P; Rooney WL; Schertz KF
    Theor Appl Genet; 2005 Oct; 111(6):994-1012. PubMed ID: 16078015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High gene density is conserved at syntenic loci of small and large grass genomes.
    Feuillet C; Keller B
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):8265-70. PubMed ID: 10393983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.