These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 9476593)

  • 21. ERG rod a-wave in Oguchi disease.
    Usui T; Tanimoto N; Ueki S; Takagi M; Hasegawa S; Abe H; Sekiya K; Nakazawa M
    Vision Res; 2004 Mar; 44(5):535-40. PubMed ID: 14680778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rod and cone photoreceptor function in patients with cone dystrophy.
    Holopigian K; Greenstein VC; Seiple W; Hood DC; Carr RE
    Invest Ophthalmol Vis Sci; 2004 Jan; 45(1):275-81. PubMed ID: 14691184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of post-receptoral cells to the a-wave of the human photopic electroretinogram.
    Bradshaw K
    Vision Res; 2007 Oct; 47(22):2878-88. PubMed ID: 17850841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The scotopic threshold response of the dark-adapted electroretinogram of the mouse.
    Saszik SM; Robson JG; Frishman LJ
    J Physiol; 2002 Sep; 543(Pt 3):899-916. PubMed ID: 12231647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward a unified model of vertebrate rod phototransduction.
    Hamer RD; Nicholas SC; Tranchina D; Lamb TD; Jarvinen JL
    Vis Neurosci; 2005; 22(4):417-36. PubMed ID: 16212700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Features of the human rod bipolar cell ERG response during fusion of scotopic flicker.
    Cameron AM; Lam JS
    Seeing Perceiving; 2012; 25(6):545-60. PubMed ID: 23550364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling the initial phase of the human rod photoreceptor response to the onset of steady illumination.
    Mahroo OA; Ban VS; Bussmann BM; Copley HC; Hammond CJ; Lamb TD
    Doc Ophthalmol; 2012 Apr; 124(2):125-31. PubMed ID: 22350929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-color pupillometry in enhanced S-cone syndrome caused by NR2E3 mutations.
    Collison FT; Park JC; Fishman GA; Stone EM; McAnany JJ
    Doc Ophthalmol; 2016 Jun; 132(3):157-66. PubMed ID: 27033713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation.
    Birch DG; Hood DC; Nusinowitz S; Pepperberg DR
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1603-14. PubMed ID: 7601641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of Ca++-dependent gain changes in PDE activation in vertebrate rod phototransduction.
    Hamer RD
    Mol Vis; 2000 Dec; 6():265-86. PubMed ID: 11139649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rod a-wave analysis using high intensity flashes adds information on rod system function in 25% of clinical ERG recordings.
    Nilsson J; Wright T; Westall CA
    Vision Res; 2008 Aug; 48(18):1920-5. PubMed ID: 18590924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Recording rod ON and OFF responses in ERG and multifocal ERG].
    Chen C; Du L; Piao C; Miyake Y
    Yan Ke Xue Bao; 2006 Mar; 22(1):47-53. PubMed ID: 17162929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age.
    Cideciyan AV; Jacobson SG
    Vision Res; 1996 Aug; 36(16):2609-21. PubMed ID: 8917821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Excitation and desensitization of mouse rod photoreceptors in vivo following bright adapting light.
    Kang Derwent JJ; Qtaishat NM; Pepperberg DR
    J Physiol; 2002 May; 541(Pt 1):201-18. PubMed ID: 12015430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo studies of signaling in rod pathways of the mouse using the electroretinogram.
    Robson JG; Maeda H; Saszik SM; Frishman LJ
    Vision Res; 2004 Dec; 44(28):3253-68. PubMed ID: 15535993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for photoreceptor changes in patients with diabetic retinopathy.
    Holopigian K; Greenstein VC; Seiple W; Hood DC; Carr RE
    Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2355-65. PubMed ID: 9344359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative electroretinogram measures of phototransduction in cone and rod photoreceptors: normal aging, progression with disease, and test-retest variability.
    Birch DG; Hood DC; Locke KG; Hoffman DR; Tzekov RT
    Arch Ophthalmol; 2002 Aug; 120(8):1045-51. PubMed ID: 12149058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploration of multifocal rod electroretinograms recording in human.
    Chen C; Wu L; Wu DZ; Long S; Liang J; Jiang F; Jiang L
    Yan Ke Xue Bao; 2002 Sep; 18(3):136-42. PubMed ID: 15510741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recovery of the rod photoresponse in infants.
    Hansen RM; Fulton AB
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):764-8. PubMed ID: 15671311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.