BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 9477373)

  • 1. Stimulation by polyols of the two ryanodine receptor isoforms of frog skeletal muscle.
    Murayama T; Kurebayashi N; Ogawa Y
    J Muscle Res Cell Motil; 1998 Jan; 19(1):15-24. PubMed ID: 9477373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectively suppressed Ca2+-induced Ca2+ release activity of alpha-ryanodine receptor (alpha-RyR) in frog skeletal muscle sarcoplasmic reticulum: potential distinct modes in Ca2+ release between alpha- and beta-RyR.
    Murayama T; Ogawa Y
    J Biol Chem; 2001 Jan; 276(4):2953-60. PubMed ID: 11054412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of properties of Ca2+ release channels between rabbit and frog skeletal muscles.
    Ogawa Y; Murayama T; Kurebayashi N
    Mol Cell Biochem; 1999 Jan; 190(1-2):191-201. PubMed ID: 10098987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Mg(2+) in Ca(2+)-induced Ca(2+) release through ryanodine receptors of frog skeletal muscle: modulations by adenine nucleotides and caffeine.
    Murayama T; Kurebayashi N; Ogawa Y
    Biophys J; 2000 Apr; 78(4):1810-24. PubMed ID: 10733962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similar Ca2+ dependences of [3H]ryanodine binding to alpha- and beta-ryanodine receptors purified from bullfrog skeletal muscle in an isotonic medium.
    Murayama T; Ogawa Y
    FEBS Lett; 1996 Feb; 380(3):267-71. PubMed ID: 8601438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ryanodine receptor isoforms of non-Mammalian skeletal muscle.
    Ogawa Y; Murayama T; Kurebayashi N
    Front Biosci; 2002 May; 7():d1184-94. PubMed ID: 11991845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide probe of ryanodine receptor function. Imperatoxin A, a peptide from the venom of the scorpion Pandinus imperator, selectively activates skeletal-type ryanodine receptor isoforms.
    el-Hayek R; Lokuta AJ; Arévalo C; Valdivia HH
    J Biol Chem; 1995 Dec; 270(48):28696-704. PubMed ID: 7499390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle.
    Treves S; Scutari E; Robert M; Groh S; Ottolia M; Prestipino G; Ronjat M; Zorzato F
    Biochemistry; 1997 Sep; 36(38):11496-503. PubMed ID: 9298970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing effect of calmodulin on Ca(2+)-induced Ca2+ release in the sarcoplasmic reticulum of rabbit skeletal muscle fibres.
    Ikemoto T; Iino M; Endo M
    J Physiol; 1995 Sep; 487 ( Pt 3)(Pt 3):573-82. PubMed ID: 8544122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RyR1 exhibits lower gain of CICR activity than RyR3 in the SR: evidence for selective stabilization of RyR1 channel.
    Murayama T; Ogawa Y
    Am J Physiol Cell Physiol; 2004 Jul; 287(1):C36-45. PubMed ID: 14985235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of two ryanodine-binding protein isoforms from sarcoplasmic reticulum of bullfrog skeletal muscle.
    Murayama T; Ogawa Y
    J Biochem; 1992 Oct; 112(4):514-22. PubMed ID: 1337084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of sulfhydryls of the skeletal muscle calcium release channel by organic mercurial compounds alters Ca2+ affinity of regulatory Ca2+ sites in single channel recordings and [3H]ryanodine binding.
    Suko J; Hellmann G
    Biochim Biophys Acta; 1998 Sep; 1404(3):435-50. PubMed ID: 9739172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-induced calcium release in skeletal muscle.
    Endo M
    Physiol Rev; 2009 Oct; 89(4):1153-76. PubMed ID: 19789379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium waves induced by hypertonic solutions in intact frog skeletal muscle fibres.
    Chawla S; Skepper JN; Hockaday AR; Huang CL
    J Physiol; 2001 Oct; 536(Pt 2):351-9. PubMed ID: 11600671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride-dependent sarcoplasmic reticulum Ca2+ release correlates with increased Ca2+ activation of ryanodine receptors.
    Fruen BR; Kane PK; Mickelson JR; Louis CF
    Biophys J; 1996 Nov; 71(5):2522-30. PubMed ID: 8913591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the ryanodine receptor sarcoplasmic reticular Ca2+ channel in skinned fibers of fast- and slow-twitch skeletal muscles from rabbits.
    Su JY; Chang YI
    Pflugers Arch; 1995 Jul; 430(3):358-64. PubMed ID: 7491259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of Ryr3 ryanodine receptor isoform in mammalian brain.
    Murayama T; Ogawa Y
    J Biol Chem; 1996 Mar; 271(9):5079-84. PubMed ID: 8617786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation-dephosphorylation mechanism.
    Lokuta AJ; Rogers TB; Lederer WJ; Valdivia HH
    J Physiol; 1995 Sep; 487 ( Pt 3)(Pt 3):609-22. PubMed ID: 8544125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes.
    Murayama T; Kurebayashi N
    Prog Biophys Mol Biol; 2011 May; 105(3):134-44. PubMed ID: 21029746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological differences between the alpha and beta ryanodine receptors of fish skeletal muscle.
    O'Brien J; Valdivia HH; Block BA
    Biophys J; 1995 Feb; 68(2):471-82. PubMed ID: 7696500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.