These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 9477380)

  • 1. Pattern of continuous muscle fibre activity depending on fibre stretch and stimulation frequency.
    Radicheva N; Mileva K; Vydevska M
    J Muscle Res Cell Motil; 1998 Jan; 19(1):87-94. PubMed ID: 9477380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretch- and stimulation frequency-induced changes in extracellular action potentials of muscle fibres during continuous activity.
    Mileva K; Vydevska M; Radicheva N
    J Muscle Res Cell Motil; 1998 Jan; 19(1):95-103. PubMed ID: 9477381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential changes in myoelectric characteristics of slow and fast fatigable frog muscle fibres during long-lasting activity.
    Vydevska-Chichova M; Mileva K; Radicheva N
    J Electromyogr Kinesiol; 2007 Apr; 17(2):131-41. PubMed ID: 16524744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics.
    Vydevska-Chichova M; Mileva K; Todorova R; Dimitrova M; Radicheva N
    Gen Physiol Biophys; 2005 Dec; 24(4):381-96. PubMed ID: 16474184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue-induced changes in muscle fiber action potentials estimated by wavelet analysis.
    Vukova T; Vydevska-Chichova M; Radicheva N
    J Electromyogr Kinesiol; 2008 Jun; 18(3):397-409. PubMed ID: 17287133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided analysis of muscle fibre conduction velocity in neuromuscular diseases.
    Vogt TH; Fritz A
    Neurol Sci; 2006 Apr; 27(1):51-7. PubMed ID: 16688600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term electrical stimulation alters tongue muscle fibre type composition.
    Pae EK; Hyatt JP; Wu J; Chien P
    Arch Oral Biol; 2007 Jun; 52(6):544-51. PubMed ID: 17239813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three methods for estimation of changes in frequency characteristics of potentials elicited by long-lasting (fatiguing) activity of isolated muscle fibres.
    Vukova TI; Dimitrov V; Radicheva N
    Gen Physiol Biophys; 2010 Sep; 29(3):243-54. PubMed ID: 20817948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recruitment pattern of muscle fibre type during high intensity exercise (60-100% VO2max) in thoroughbred horses.
    Yamano S; Eto D; Hiraga A; Miyata H
    Res Vet Sci; 2006 Feb; 80(1):109-15. PubMed ID: 15992837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging transcription in vivo: distinct regulatory effects of fast and slow activity patterns on promoter elements from vertebrate troponin I isoform genes.
    Rana ZA; Gundersen K; Buonanno A; Vullhorst D
    J Physiol; 2005 Feb; 562(Pt 3):815-28. PubMed ID: 15528243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wave properties of action potentials from fast and slow motor units of rats.
    Wakeling JM; Syme DA
    Muscle Nerve; 2002 Nov; 26(5):659-68. PubMed ID: 12402288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Masticatory muscles. Part II. Functional properties of the masticatory muscle fibers].
    Weijs WA
    Ned Tijdschr Tandheelkd; 1997 Jun; 104(6):210-3. PubMed ID: 11923915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-sigmoid model for fitting fatigue profiles in mouse fast- and slow-twitch muscle.
    Cairns SP; Robinson DM; Loiselle DS
    Exp Physiol; 2008 Jul; 93(7):851-62. PubMed ID: 18344260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential targets for skeletal muscle impairment by hypogravity: basic characterization of resting ionic conductances and mechanical threshold of rat fast- and slow-twitch muscle fibers.
    De Luca A; Liantonio A; Pierno S; Desaphy JF; Leoty C; Conte Camerino D
    J Gravit Physiol; 1998 Jul; 5(1):P75-6. PubMed ID: 11542372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postnatal emergence of mature release properties in terminals of rat fast- and slow-twitch muscles.
    Bewick GS; Reid B; Jawaid S; Hatcher T; Shanley L
    Eur J Neurosci; 2004 Jun; 19(11):2967-76. PubMed ID: 15182303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of twitch force by stretch in a nerve-skeletal muscle preparation of the frog Rana porosa brevipoda and the effects of temperature on it.
    Ishii Y; Watari T; Tsuchiya T
    J Exp Biol; 2004 Dec; 207(Pt 26):4505-13. PubMed ID: 15579546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frog muscle fibre action potential and different extracellular calcium concentration at lowered pH in the medium.
    Radicheva N; Mileva K; Martinov V
    Acta Physiol Pharmacol Bulg; 1998; 23(3-4):107-13. PubMed ID: 10672337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histochemical and morphometrical characterization and distribution of fibre types in four muscles of ostrich (Struthio camelus).
    Velotto S; Crasto A
    Anat Histol Embryol; 2004 Oct; 33(5):251-6. PubMed ID: 15352876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of excitability parameters and sodium channel behavior of fast- and slow-twitch rat skeletal muscles for the study of the effects of hindlimb suspension, a model of hypogravity.
    Desaphy JF; Pierno S; Liantonio A; De Luca A; Leoty C; Conte Camerino D
    J Gravit Physiol; 1998 Jul; 5(1):P77-8. PubMed ID: 11542373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral and time domain characteristics of single muscle fibre action potentials during continuous activity extracted from model considerations.
    Radicheva N; Slavcheva G
    Biol Cybern; 1998 Nov; 79(5):427-35. PubMed ID: 9851022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.