BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9477956)

  • 1. Disulfide bond exchange in rhodopsin.
    Kono M; Yu H; Oprian DD
    Biochemistry; 1998 Feb; 37(5):1302-5. PubMed ID: 9477956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent.
    Cai K; Itoh Y; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4877-82. PubMed ID: 11320237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between Cys316 and engineered cysteines in cytoplasmic loop 1.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12472-8. PubMed ID: 11601970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general method for mapping tertiary contacts between amino acid residues in membrane-embedded proteins.
    Yu H; Kono M; McKee TD; Oprian DD
    Biochemistry; 1995 Nov; 34(46):14963-9. PubMed ID: 7578109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting molecular interactions that stabilize native bovine rhodopsin.
    Tanuj Sapra K; Park PS; Filipek S; Engel A; Müller DJ; Palczewski K
    J Mol Biol; 2006 Apr; 358(1):255-69. PubMed ID: 16519899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between cysteine pairs engineered in cytoplasmic loops 1, 3, and 4.
    Cai K; Klein-Seetharaman J; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12479-85. PubMed ID: 11601971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function in rhodopsin: effects of disulfide cross-links in the cytoplasmic face of rhodopsin on transducin activation and phosphorylation by rhodopsin kinase.
    Cai K; Klein-Seetharaman J; Hwa J; Hubbell WL; Khorana HG
    Biochemistry; 1999 Sep; 38(39):12893-8. PubMed ID: 10504260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187.
    Karnik SS; Khorana HG
    J Biol Chem; 1990 Oct; 265(29):17520-4. PubMed ID: 2145276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function in rhodopsin. Separation and characterization of the correctly folded and misfolded opsins produced on expression of an opsin mutant gene containing only the native intradiscal cysteine codons.
    Ridge KD; Lu Z; Liu X; Khorana HG
    Biochemistry; 1995 Mar; 34(10):3261-7. PubMed ID: 7880821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tertiary interactions between transmembrane segments 3 and 5 near the cytoplasmic side of rhodopsin.
    Yu H; Oprian DD
    Biochemistry; 1999 Sep; 38(37):12033-40. PubMed ID: 10508407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opsin stability and folding: the role of Cys185 and abnormal disulfide bond formation in the intradiscal domain.
    McKibbin C; Toye AM; Reeves PJ; Khorana HG; Edwards PC; Villa C; Booth PJ
    J Mol Biol; 2007 Dec; 374(5):1309-18. PubMed ID: 17988684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function in rhodopsin. Single cysteine substitution mutants in the cytoplasmic interhelical E-F loop region show position-specific effects in transducin activation.
    Yang K; Farrens DL; Hubbell WL; Khorana HG
    Biochemistry; 1996 Sep; 35(38):12464-9. PubMed ID: 8823181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function in rhodopsin: covalent crosslinking of the rhodopsin (metarhodopsin II)-transducin complex--the rhodopsin cytoplasmic face links to the transducin alpha subunit.
    Resek JF; Farrens D; Khorana HG
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7643-7. PubMed ID: 8052635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state.
    Davidson FF; Loewen PC; Khorana HG
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4029-33. PubMed ID: 8171030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cysteine substitution mutants at amino acid positions 55-75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7938-44. PubMed ID: 10387036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-dependent disulfide cross-linking in rhodopsin.
    Yu H; Kono M; Oprian DD
    Biochemistry; 1999 Sep; 38(37):12028-32. PubMed ID: 10508406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function in rhodopsin: Mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants.
    Hwa J; Klein-Seetharaman J; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4872-6. PubMed ID: 11320236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tertiary interactions between the fifth and sixth transmembrane segments of rhodopsin.
    Struthers M; Yu H; Kono M; Oprian DD
    Biochemistry; 1999 May; 38(20):6597-603. PubMed ID: 10350478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function in rhodopsin: further elucidation of the role of the intradiscal cysteines, Cys-110, -185, and -187, in rhodopsin folding and function.
    Hwa J; Reeves PJ; Klein-Seetharaman J; Davidson F; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1932-5. PubMed ID: 10051572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of the second extracellular loop of rhodopsin by characterizing split variants.
    Sakai K; Imamoto Y; Yamashita T; Shichida Y
    Photochem Photobiol Sci; 2010 Nov; 9(11):1490-7. PubMed ID: 20886156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.