These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 9477959)
1. QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site. Seatter MJ; De la Rue SA; Porter LM; Gould GW Biochemistry; 1998 Feb; 37(5):1322-6. PubMed ID: 9477959 [TBL] [Abstract][Full Text] [Related]
2. Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Arbuckle MI; Kane S; Porter LM; Seatter MJ; Gould GW Biochemistry; 1996 Dec; 35(51):16519-27. PubMed ID: 8987985 [TBL] [Abstract][Full Text] [Related]
3. Structure-function studies of the brain-type glucose transporter, GLUT3: alanine-scanning mutagenesis of putative transmembrane helix VIII and an investigation of the role of proline residues in transport catalysis. Seatter MJ; Kane S; Porter LM; Arbuckle MI; Melvin DR; Gould GW Biochemistry; 1997 May; 36(21):6401-7. PubMed ID: 9174356 [TBL] [Abstract][Full Text] [Related]
4. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Colville CA; Seatter MJ; Jess TJ; Gould GW; Thomas HM Biochem J; 1993 Mar; 290 ( Pt 3)(Pt 3):701-6. PubMed ID: 8457197 [TBL] [Abstract][Full Text] [Related]
5. Model of the 3-D structure of the GLUT3 glucose transporter and molecular dynamics simulation of glucose transport. Dwyer DS Proteins; 2001 Mar; 42(4):531-41. PubMed ID: 11170207 [TBL] [Abstract][Full Text] [Related]
6. A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity. Manolescu AR; Augustin R; Moley K; Cheeseman C Mol Membr Biol; 2007; 24(5-6):455-63. PubMed ID: 17710649 [TBL] [Abstract][Full Text] [Related]
7. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. Burant CF; Bell GI Biochemistry; 1992 Oct; 31(42):10414-20. PubMed ID: 1420159 [TBL] [Abstract][Full Text] [Related]
8. Different functional domains of GLUT2 glucose transporter are required for glucose affinity and substrate specificity. Wu L; Fritz JD; Powers AC Endocrinology; 1998 Oct; 139(10):4205-12. PubMed ID: 9751501 [TBL] [Abstract][Full Text] [Related]
9. Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1. Dawson PA; Mychaleckyj JC; Fossey SC; Mihic SJ; Craddock AL; Bowden DW Mol Genet Metab; 2001; 74(1-2):186-99. PubMed ID: 11592815 [TBL] [Abstract][Full Text] [Related]
10. Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. Li Q; Manolescu A; Ritzel M; Yao S; Slugoski M; Young JD; Chen XZ; Cheeseman CI Am J Physiol Gastrointest Liver Physiol; 2004 Jul; 287(1):G236-42. PubMed ID: 15033637 [TBL] [Abstract][Full Text] [Related]
11. Hexose transporter expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C. Angulo C; Rauch MC; Droppelmann A; Reyes AM; Slebe JC; Delgado-López F; Guaiquil VH; Vera JC; Concha II J Cell Biochem; 1998 Nov; 71(2):189-203. PubMed ID: 9779818 [TBL] [Abstract][Full Text] [Related]
12. Cysteine-scanning mutagenesis of flanking regions at the boundary between external loop I or IV and transmembrane segment II or VII in the GLUT1 glucose transporter. Olsowski A; Monden I; Keller K Biochemistry; 1998 Jul; 37(30):10738-45. PubMed ID: 9692964 [TBL] [Abstract][Full Text] [Related]
13. Functional studies of human GLUT5: effect of pH on substrate selection and an analysis of substrate interactions. Kane S; Seatter MJ; Gould GW Biochem Biophys Res Commun; 1997 Sep; 238(2):503-5. PubMed ID: 9299540 [TBL] [Abstract][Full Text] [Related]
15. Crucial effects of amino acid side chain length in transmembrane segment 5 on substrate affinity in yeast glucose transporter Hxt7. Kasahara T; Shimogawara K; Kasahara M Biochemistry; 2011 Oct; 50(40):8674-81. PubMed ID: 21892826 [TBL] [Abstract][Full Text] [Related]
16. Properties and heterologous expression of the glucose transporter GHT1 from Schizosaccharomyces pombe. Lichtenberg-Fraté H; Näschen T; Heiland S; Höfer M Yeast; 1997 Mar; 13(3):215-24. PubMed ID: 9090050 [TBL] [Abstract][Full Text] [Related]
17. Structural domains that contribute to substrate specificity in facilitated glucose transporters are distinct from those involved in kinetic function: studies with GLUT-1/GLUT-2 chimeras. Noel LE; Newgard CB Biochemistry; 1997 May; 36(18):5465-75. PubMed ID: 9154929 [TBL] [Abstract][Full Text] [Related]
18. Functional characterization of an insulin-responsive glucose transporter (GLUT4) from fish adipose tissue. Capilla E; Díaz M; Albalat A; Navarro I; Pessin JE; Keller K; Planas JV Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E348-57. PubMed ID: 15113704 [TBL] [Abstract][Full Text] [Related]
19. Amino acid residues involved in ligand preference of the Snf3 transporter-like sensor in Saccharomyces cerevisiae. Dietvorst J; Karhumaa K; Kielland-Brandt MC; Brandt A Yeast; 2010 Mar; 27(3):131-8. PubMed ID: 20014043 [TBL] [Abstract][Full Text] [Related]
20. Characterization of glucose transport and glucose transporters in the human choriocarcinoma cell line, BeWo. Shah SW; Zhao H; Low SY; Mcardle HJ; Hundal HS Placenta; 1999 Nov; 20(8):651-9. PubMed ID: 10527819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]