These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot. Gonzalez RL; Tinoco I J Mol Biol; 1999 Jun; 289(5):1267-82. PubMed ID: 10373367 [TBL] [Abstract][Full Text] [Related]
4. Equilibrium unfolding (folding) pathway of a model H-type pseudoknotted RNA: the role of magnesium ions in stability. Nixon PL; Giedroc DP Biochemistry; 1998 Nov; 37(46):16116-29. PubMed ID: 9819204 [TBL] [Abstract][Full Text] [Related]
5. A characteristic bent conformation of RNA pseudoknots promotes -1 frameshifting during translation of retroviral RNA. Chen X; Kang H; Shen LX; Chamorro M; Varmus HE; Tinoco I J Mol Biol; 1996 Jul; 260(4):479-83. PubMed ID: 8759314 [TBL] [Abstract][Full Text] [Related]
6. Base-pairings within the RNA pseudoknot associated with the simian retrovirus-1 gag-pro frameshift site. Du Z; Holland JA; Hansen MR; Giedroc DP; Hoffman DW J Mol Biol; 1997 Jul; 270(3):464-70. PubMed ID: 9237911 [TBL] [Abstract][Full Text] [Related]
7. The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. Kieft JS; Zhou K; Jubin R; Murray MG; Lau JY; Doudna JA J Mol Biol; 1999 Sep; 292(3):513-29. PubMed ID: 10497018 [TBL] [Abstract][Full Text] [Related]
8. Identification of a high affinity nucleocapsid protein binding element within the Moloney murine leukemia virus Psi-RNA packaging signal: implications for genome recognition. D'Souza V; Melamed J; Habib D; Pullen K; Wallace K; Summers MF J Mol Biol; 2001 Nov; 314(2):217-32. PubMed ID: 11718556 [TBL] [Abstract][Full Text] [Related]
9. Untying the FIV frameshifting pseudoknot structure by MS3D. Yu ET; Zhang Q; Fabris D J Mol Biol; 2005 Jan; 345(1):69-80. PubMed ID: 15567411 [TBL] [Abstract][Full Text] [Related]
10. Selective pressures on RNA hairpins in vivo and in vitro. Gultyaev AP; van Batenburg FH; Pleij CW J Mol Evol; 2002 Jan; 54(1):1-8. PubMed ID: 11734892 [TBL] [Abstract][Full Text] [Related]
11. The jerky and knotty dynamics of RNA. Isambert H Methods; 2009 Oct; 49(2):189-96. PubMed ID: 19563894 [TBL] [Abstract][Full Text] [Related]
12. Mutational and structural analysis of stem-loop IIIC of the hepatitis C virus and GB virus B internal ribosome entry sites. Rijnbrand R; Thiviyanathan V; Kaluarachchi K; Lemon SM; Gorenstein DG J Mol Biol; 2004 Oct; 343(4):805-17. PubMed ID: 15476802 [TBL] [Abstract][Full Text] [Related]
13. NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein. Smith JS; Nikonowicz EP Biochemistry; 1998 Sep; 37(39):13486-98. PubMed ID: 9753434 [TBL] [Abstract][Full Text] [Related]
14. The folding pathway of the genomic hepatitis delta virus ribozyme is dominated by slow folding of the pseudoknots. Chadalavada DM; Senchak SE; Bevilacqua PC J Mol Biol; 2002 Apr; 317(4):559-75. PubMed ID: 11955009 [TBL] [Abstract][Full Text] [Related]
15. Nuclear magnetic resonance structure of the Varkud satellite ribozyme stem-loop V RNA and magnesium-ion binding from chemical-shift mapping. Campbell DO; Legault P Biochemistry; 2005 Mar; 44(11):4157-70. PubMed ID: 15766243 [TBL] [Abstract][Full Text] [Related]
16. The major HIV-1 packaging signal is an extended bulged stem loop whose structure is altered on interaction with the Gag polyprotein. Zeffman A; Hassard S; Varani G; Lever A J Mol Biol; 2000 Apr; 297(4):877-93. PubMed ID: 10736224 [TBL] [Abstract][Full Text] [Related]
17. Direct mass spectrometric determination of the stoichiometry and binding affinity of the complexes between nucleocapsid protein and RNA stem-loop hairpins of the HIV-1 Psi-recognition element. Hagan N; Fabris D Biochemistry; 2003 Sep; 42(36):10736-45. PubMed ID: 12962498 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of uranyl photocleavage as a probe to monitor ion binding and flexibility in RNAs. Wittberger D; Berens C; Hammann C; Westhof E; Schroeder R J Mol Biol; 2000 Jul; 300(2):339-52. PubMed ID: 10873469 [TBL] [Abstract][Full Text] [Related]
19. Protonation of non-Watson-Crick base pairs and encapsidation of turnip yellow mosaic virus RNA. Bink HH; Hellendoorn K; van der Meulen J; Pleij CW Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13465-70. PubMed ID: 12361978 [TBL] [Abstract][Full Text] [Related]
20. Dimerization of nucleic acid hairpins in the conditions caused by neutral cosolutes. Nakano S; Hirayama H; Miyoshi D; Sugimoto N J Phys Chem B; 2012 Jun; 116(25):7406-15. PubMed ID: 22703387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]