These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 9478932)
1. Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. Külzer R; Pils T; Kappl R; Hüttermann J; Knappe J J Biol Chem; 1998 Feb; 273(9):4897-903. PubMed ID: 9478932 [TBL] [Abstract][Full Text] [Related]
2. Adenosylmethionine-dependent synthesis of the glycyl radical in pyruvate formate-lyase by abstraction of the glycine C-2 pro-S hydrogen atom. Studies of [2H]glycine-substituted enzyme and peptides homologous to the glycine 734 site. Frey M; Rothe M; Wagner AF; Knappe J J Biol Chem; 1994 Apr; 269(17):12432-7. PubMed ID: 8175649 [TBL] [Abstract][Full Text] [Related]
3. Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe-4S](+) cluster of pyruvate formate-lyase activating enzyme. Walsby CJ; Hong W; Broderick WE; Cheek J; Ortillo D; Broderick JB; Hoffman BM J Am Chem Soc; 2002 Mar; 124(12):3143-51. PubMed ID: 11902903 [TBL] [Abstract][Full Text] [Related]
4. An anchoring role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme. Walsby CJ; Ortillo D; Broderick WE; Broderick JB; Hoffman BM J Am Chem Soc; 2002 Sep; 124(38):11270-1. PubMed ID: 12236732 [TBL] [Abstract][Full Text] [Related]
5. The iron-sulfur cluster of pyruvate formate-lyase activating enzyme in whole cells: cluster interconversion and a valence-localized [4Fe-4S]2+ state. Yang J; Naik SG; Ortillo DO; García-Serres R; Li M; Broderick WE; Huynh BH; Broderick JB Biochemistry; 2009 Oct; 48(39):9234-41. PubMed ID: 19711960 [TBL] [Abstract][Full Text] [Related]
7. The activating component of the anaerobic ribonucleotide reductase from Escherichia coli. An iron-sulfur center with only three cysteines. Tamarit J; Gerez C; Meier C; Mulliez E; Trautwein A; Fontecave M J Biol Chem; 2000 May; 275(21):15669-75. PubMed ID: 10821845 [TBL] [Abstract][Full Text] [Related]
8. Site-specific mutational analysis of a novel cysteine motif proposed to ligate the 4Fe-4S cluster in the iron-sulfur flavoprotein of the thermophilic methanoarchaeon Methanosarcina thermophila. Leartsakulpanich U; Antonkine ML; Ferry JG J Bacteriol; 2000 Oct; 182(19):5309-16. PubMed ID: 10986231 [TBL] [Abstract][Full Text] [Related]
9. A dehydroalanyl residue can capture the 5'-deoxyadenosyl radical generated from S-adenosylmethionine by pyruvate formate-lyase-activating enzyme. Wagner AF; Demand J; Schilling G; Pils T; Knappe J Biochem Biophys Res Commun; 1999 Jan; 254(2):306-10. PubMed ID: 9918833 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of Radical Initiation in the Radical S-Adenosyl-l-methionine Superfamily. Broderick WE; Hoffman BM; Broderick JB Acc Chem Res; 2018 Nov; 51(11):2611-2619. PubMed ID: 30346729 [TBL] [Abstract][Full Text] [Related]
11. Electron paramagnetic resonance evidence for a novel interconversion of [3Fe-4S](+) and [4Fe-4S](+) clusters with endogenous iron and sulfide in anaerobic ribonucleotide reductase activase in vitro. Liu A; Gräslund A J Biol Chem; 2000 Apr; 275(17):12367-73. PubMed ID: 10777518 [TBL] [Abstract][Full Text] [Related]
12. The iron-sulfur center of biotin synthase: site-directed mutants. Hewitson KS; Ollagnier-de Choudens S; Sanakis Y; Shaw NM; Baldwin JE; Münck E; Roach PL; Fontecave M J Biol Inorg Chem; 2002 Jan; 7(1-2):83-93. PubMed ID: 11862544 [TBL] [Abstract][Full Text] [Related]
13. Characterization of an active spore photoproduct lyase, a DNA repair enzyme in the radical S-adenosylmethionine superfamily. Buis JM; Cheek J; Kalliri E; Broderick JB J Biol Chem; 2006 Sep; 281(36):25994-6003. PubMed ID: 16829680 [TBL] [Abstract][Full Text] [Related]
14. Coordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: a Mössbauer spectroscopic study. Krebs C; Broderick WE; Henshaw TF; Broderick JB; Huynh BH J Am Chem Soc; 2002 Feb; 124(6):912-3. PubMed ID: 11829592 [TBL] [Abstract][Full Text] [Related]
15. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme. Shisler KA; Hutcheson RU; Horitani M; Duschene KS; Crain AV; Byer AS; Shepard EM; Rasmussen A; Yang J; Broderick WE; Vey JL; Drennan CL; Hoffman BM; Broderick JB J Am Chem Soc; 2017 Aug; 139(34):11803-11813. PubMed ID: 28768413 [TBL] [Abstract][Full Text] [Related]
16. Pyruvate formate-lyase activating enzyme: The catalytically active 5'-deoxyadenosyl radical caught in the act of H-atom abstraction. Lundahl MN; Yang H; Broderick WE; Hoffman BM; Broderick JB Proc Natl Acad Sci U S A; 2023 Nov; 120(47):e2314696120. PubMed ID: 37956301 [TBL] [Abstract][Full Text] [Related]
17. Pyruvate formate-lyase and its activation by pyruvate formate-lyase activating enzyme. Crain AV; Broderick JB J Biol Chem; 2014 Feb; 289(9):5723-9. PubMed ID: 24338017 [TBL] [Abstract][Full Text] [Related]
18. Inactivation of pyruvate formate-lyase by dioxygen: defining the mechanistic interplay of glycine 734 and cysteine 419 by rapid freeze-quench EPR. Zhang W; Wong KK; Magliozzo RS; Kozarich JW Biochemistry; 2001 Apr; 40(13):4123-30. PubMed ID: 11300793 [TBL] [Abstract][Full Text] [Related]
19. Site-directed mutagenesis of conserved cysteine residues within the beta subunit of Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of the mutated enzymes. Augier V; Guigliarelli B; Asso M; Bertrand P; Frixon C; Giordano G; Chippaux M; Blasco F Biochemistry; 1993 Mar; 32(8):2013-23. PubMed ID: 8383531 [TBL] [Abstract][Full Text] [Related]