These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 947906)
21. Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. McBain CJ; Kleckner NW; Wyrick S; Dingledine R Mol Pharmacol; 1989 Oct; 36(4):556-65. PubMed ID: 2554111 [TBL] [Abstract][Full Text] [Related]
22. A highly reactive beta-galactosidase (Escherichia coli) resulting from a substitution of an aspartic acid for Gly-794. Martinez-Bilbao M; Holdsworth RE; Edwards LA; Huber RE J Biol Chem; 1991 Mar; 266(8):4979-86. PubMed ID: 1900512 [TBL] [Abstract][Full Text] [Related]
23. Alkaline pH dependence of delta-chymotrypsin-catalyzed hydrolysis of specific substrates. Valenzuela P; Bender ML Proc Natl Acad Sci U S A; 1969 Aug; 63(4):1214-21. PubMed ID: 5260922 [TBL] [Abstract][Full Text] [Related]
24. Comparative studies of the specificities of -chymotrypsin and subtilisin BPN'. Studies with flexible and 'locked' substrates. Pattabiraman TN; Lawson WB Biochem J; 1972 Feb; 126(3):659-65. PubMed ID: 5075272 [TBL] [Abstract][Full Text] [Related]
25. The interaction of alpha-chymotrypsin with isosteric substrates of different charge type. Hawkins MJ; Knowles JR; Wilson L; Witcher D Biochem J; 1967 Sep; 104(3):762-6. PubMed ID: 6049922 [TBL] [Abstract][Full Text] [Related]
26. Kinetic investigation of the alpha-chymotrypsin-catalyzed hydrolysis of peptide-ester substrates. The relationship between the structure of the peptide moiety and reactivity. Bizzozero SA; Baumann WK; Dutler H Eur J Biochem; 1975 Oct; 58(1):167-76. PubMed ID: 1183433 [TBL] [Abstract][Full Text] [Related]
27. pH dependence and structural interpretation of the reactions of Coprinus cinereus peroxidase with hydrogen peroxide, ferulic acid, and 2,2'-azinobis. Abelskov AK; Smith AT; Rasmussen CB; Dunford HB; Welinder KG Biochemistry; 1997 Aug; 36(31):9453-63. PubMed ID: 9235990 [TBL] [Abstract][Full Text] [Related]
28. Novel diphenyl esters of peptidyl alpha-aminoalkylphosphonates as inhibitors of chymotrypsin and subtilisin. Pietrusewicz E; Sieńczyk M; Oleksyszyn J J Enzyme Inhib Med Chem; 2009 Dec; 24(6):1229-36. PubMed ID: 19912056 [TBL] [Abstract][Full Text] [Related]
29. Macrophage esterase: identification, purification and properties of a chymotrypsin-like esterase from lung that hydrolyses and transfers nonpolar amino acid esters. Rojas-Espinosa O; Arce-Paredez P; Dannenberg AM; Kamaenetz RL Biochim Biophys Acta; 1975 Sep; 403(1):161-79. PubMed ID: 240426 [TBL] [Abstract][Full Text] [Related]
30. Specificity of trypsin and alpha-chymotrypsin towards neutral substrates. Vajda T; Szabó T Acta Biochim Biophys Acad Sci Hung; 1976; 11(4):287-94. PubMed ID: 1026004 [TBL] [Abstract][Full Text] [Related]
31. Catalytic activity of dimeric alpha-chymotrypsin. Acylation kinetics at low pH's. Ikeda K; Kunugi S; Hirohara H J Biochem; 1980 Mar; 87(3):871-80. PubMed ID: 7390966 [TBL] [Abstract][Full Text] [Related]
32. Thionesters as a probe for electrophilic catalysis in the serine protease mechanism. Campbell P; Nashed NT; Lapinskas BA; Gurrieri J J Biol Chem; 1983 Jan; 258(1):59-66. PubMed ID: 6336754 [TBL] [Abstract][Full Text] [Related]
33. Kinetic behaviour of alpha-chymotrypsin in reverse micelles. A stopped-flow study. Mao Q; Walde P; Luisi PL Eur J Biochem; 1992 Aug; 208(1):165-70. PubMed ID: 1511684 [TBL] [Abstract][Full Text] [Related]
34. Correlations of the basicity of His 57 with transition state analogue binding, substrate reactivity, and the strength of the low-barrier hydrogen bond in chymotrypsin. Lin J; Cassidy CS; Frey PA Biochemistry; 1998 Aug; 37(34):11940-8. PubMed ID: 9718318 [TBL] [Abstract][Full Text] [Related]
35. Kinetics of the alpha-chymotrypsin-catalyzed hydrolysis of N-ACETYL-L-phenylalanylglycine amide in the equilibrium state: profit of an acylenzyme mechanism. Lyakisheva AG; Ginodman LM; Antonov VK Mol Biol; 1974 May; 7(6):667-72. PubMed ID: 4838488 [No Abstract] [Full Text] [Related]
36. Reaction of imidazole with toluene-4-sulfonate salts of substituted phenyl N-methylpyridinium-4-carboxylate esters: special base catalysis by imidazole. Colthurst MJ; Williams A Org Biomol Chem; 2003 Jun; 1(11):1995-2000. PubMed ID: 12945785 [TBL] [Abstract][Full Text] [Related]
37. Binding of the chymotrypsin substrate, tryptophan methyl ester, by rat alpha-fetoprotein. Baker ME; Morris CS; Fanestil DD Biochim Biophys Acta; 1980 Nov; 632(4):611-8. PubMed ID: 6159930 [TBL] [Abstract][Full Text] [Related]
38. A comparison of the utilization of methyl and p-nitrophenyl esters in determining the specificity of -chymotrypsin. Silver MS; Matta MS Arch Biochem Biophys; 1972 Jul; 151(1):62-7. PubMed ID: 5044527 [No Abstract] [Full Text] [Related]
39. The reactions of alpha-chymotrypsin and related proteins with ester substrates in non-aqueous solvents. Klyosov AA; Van Viet N; Berezin IV Eur J Biochem; 1975 Nov; 59(1):3-7. PubMed ID: 1204614 [TBL] [Abstract][Full Text] [Related]
40. [Synthesis of omega-carboxyacyl-L-phenylalanine-aryl esters and their use as substrates for cathepsin G and chymotrypsin]. Schnabel E Hoppe Seylers Z Physiol Chem; 1981 Jun; 362(6):655-64. PubMed ID: 7275004 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]