These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

657 related articles for article (PubMed ID: 947925)

  • 1. The fracture mechanics of fatigue crack propagation in compact bone.
    Wright TM; Hayes WC
    J Biomed Mater Res; 1976 Jul; 10(4):637-48. PubMed ID: 947925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements.
    Vashishth D
    J Biomech; 2004 Jun; 37(6):943-6. PubMed ID: 15111083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.
    Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL
    Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A qualitative analysis of crack propagation in articular cartilage at varying rates of tensile loading.
    Stok K; Oloyede A
    Connect Tissue Res; 2003; 44(2):109-20. PubMed ID: 12745678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.
    Dauskardt RH; Ritchie RO; Takemoto JK; Brendzel AM
    J Biomed Mater Res; 1994 Jul; 28(7):791-804. PubMed ID: 8083247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic short crack growth in cortical bone.
    Hazenberg JG; Taylor D; Lee TC
    Technol Health Care; 2006; 14(4-5):393-402. PubMed ID: 17065760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Fracture toughness of cortical bone in tension, shear, and tear--a comparison of longitudinal and transverse fracture].
    Feng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Sep; 14(3):199-204. PubMed ID: 11326832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of short crack growth at constant stress in bone.
    Hazenberg JG; Taylor D; Clive Lee T
    Biomaterials; 2006 Mar; 27(9):2114-22. PubMed ID: 16243392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of surface fatigue cracks in human cortical bone.
    Kruzic JJ; Scott JA; Nalla RK; Ritchie RO
    J Biomech; 2006; 39(5):968-72. PubMed ID: 15907859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a compact sandwich specimen to evaluate fracture toughness and interfacial bonding of bone.
    Wang X; Lankford J; Agrawal CM
    J Appl Biomater; 1994; 5(4):315-23. PubMed ID: 8580538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.
    Bechtle S; Fett T; Rizzi G; Habelitz S; Schneider GA
    J Mech Behav Biomed Mater; 2010 May; 3(4):303-12. PubMed ID: 20346898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress intensity variations in bone microcracks during the repair process.
    Taylor D; Tilmans A
    J Theor Biol; 2004 Jul; 229(2):169-77. PubMed ID: 15207472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact bone fatigue damage: a microscopic examination.
    Carter DR; Hayes WC
    Clin Orthop Relat Res; 1977; (127):265-74. PubMed ID: 912990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Biomaterials; 2006 Mar; 27(9):2095-113. PubMed ID: 16271757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions.
    Elbert KE; Wright TM; Rimnac CM; Klein RW; Ingraffea AR; Gunsallus K; Bartel DL
    J Biomed Mater Res; 1994 Feb; 28(2):181-7. PubMed ID: 8207029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of tubule orientation on fatigue crack growth in dentin.
    Arola DD; Rouland JA
    J Biomed Mater Res A; 2003 Oct; 67(1):78-86. PubMed ID: 14517864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue crack growth rate does not depend on mantle thickness: an idealized cemented stem construct under torsional loading.
    Hertzler J; Miller MA; Mann KA
    J Orthop Res; 2002 Jul; 20(4):676-82. PubMed ID: 12168654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.