BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 9479448)

  • 1. Hydrogenase: a hydrogen-metabolizing enzyme. What do the crystal structures tell us about its mode of action?
    Fontecilla-Camps JC; Frey M; Garcin E; Hatchikian C; Montet Y; Piras C; Vernède X; Volbeda A
    Biochimie; 1997 Nov; 79(11):661-6. PubMed ID: 9479448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the active sites in metalloenzymes 5. The heterolytic bond cleavage of H(2) in the [NiFe] hydrogenase of desulfovibrio gigas by a nucleophilic addition mechanism.
    Niu S; Hall MB
    Inorg Chem; 2001 Nov; 40(24):6201-3. PubMed ID: 11703120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center.
    Nicolet Y; Piras C; Legrand P; Hatchikian CE; Fontecilla-Camps JC
    Structure; 1999 Jan; 7(1):13-23. PubMed ID: 10368269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center.
    Garcin E; Vernede X; Hatchikian EC; Volbeda A; Frey M; Fontecilla-Camps JC
    Structure; 1999 May; 7(5):557-66. PubMed ID: 10378275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio.
    Fauque G; Peck HD; Moura JJ; Huynh BH; Berlier Y; DerVartanian DV; Teixeira M; Przybyla AE; Lespinat PA; Moura I
    FEMS Microbiol Rev; 1988 Dec; 4(4):299-344. PubMed ID: 3078655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state).
    Ogata H; Kellers P; Lubitz W
    J Mol Biol; 2010 Sep; 402(2):428-44. PubMed ID: 20673834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas.
    Volbeda A; Charon MH; Piras C; Hatchikian EC; Frey M; Fontecilla-Camps JC
    Nature; 1995 Feb; 373(6515):580-7. PubMed ID: 7854413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A third type of hydrogenase catalyzing H2 activation.
    Shima S; Thauer RK
    Chem Rec; 2007; 7(1):37-46. PubMed ID: 17304591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of the bridging ligand atom at the Ni-Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 A resolution.
    Higuchi Y; Ogata H; Miki K; Yasuoka N; Yagi T
    Structure; 1999 May; 7(5):549-56. PubMed ID: 10378274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the active sites of metalloenzymes. 4. Predictions of the unready states of [NiFe] Desulfovibrio gigas hydrogenase from density functional theory.
    Li S; Hall MB
    Inorg Chem; 2001 Jan; 40(1):18-24. PubMed ID: 11195380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics.
    Montet Y; Amara P; Volbeda A; Vernede X; Hatchikian EC; Field MJ; Frey M; Fontecilla-Camps JC
    Nat Struct Biol; 1997 Jul; 4(7):523-6. PubMed ID: 9228943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogenases.
    Sickerman NS; Hu Y
    Methods Mol Biol; 2019; 1876():65-88. PubMed ID: 30317475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers.
    Zhou T; Mo Y; Liu A; Zhou Z; Tsai KR
    Inorg Chem; 2004 Feb; 43(3):923-30. PubMed ID: 14753812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis.
    Higuchi Y; Yagi T; Yasuoka N
    Structure; 1997 Dec; 5(12):1671-80. PubMed ID: 9438867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the novel H2-activating iron-sulfur center of the "Fe-only" hydrogenases.
    Adams MW; Johnson MK; Zambrano IC; Mortenson LE
    Biochimie; 1986 Jan; 68(1):35-42. PubMed ID: 3015247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism.
    Ogata H; Lubitz W; Higuchi Y
    Dalton Trans; 2009 Oct; (37):7577-87. PubMed ID: 19759926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage.
    Thauer RK; Kaster AK; Goenrich M; Schick M; Hiromoto T; Shima S
    Annu Rev Biochem; 2010; 79():507-36. PubMed ID: 20235826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe-only hydrogenases: structure, function and evolution.
    Nicolet Y; Cavazza C; Fontecilla-Camps JC
    J Inorg Biochem; 2002 Jul; 91(1):1-8. PubMed ID: 12121756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN
    Perotto CU; Sodipo CL; Jones GJ; Tidey JP; Blake AJ; Lewis W; Davies ES; McMaster J; Schröder M
    Inorg Chem; 2018 Mar; 57(5):2558-2569. PubMed ID: 29465237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Insight into [NiFe] Hydrogenase Maturation by Transient Complexes between Hyp Proteins.
    Miki K; Atomi H; Watanabe S
    Acc Chem Res; 2020 Apr; 53(4):875-886. PubMed ID: 32227866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.