These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 9479547)
1. Corneal reinnervation after photorefractive keratectomy and laser in situ keratomileusis: an in vivo study with a confocal videomicroscope. Kauffmann T; Bodanowitz S; Hesse L; Kroll P Ger J Ophthalmol; 1996 Nov; 5(6):508-12. PubMed ID: 9479547 [TBL] [Abstract][Full Text] [Related]
2. In vivo observation of corneal nerve regeneration after photorefractive keratectomy with a confocal videomicroscope. Heinz P; Bodanowitz S; Wiegand W; Kroll P Ger J Ophthalmol; 1996 Nov; 5(6):373-7. PubMed ID: 9479521 [TBL] [Abstract][Full Text] [Related]
3. Spherical and aspherical photorefractive keratectomy and laser in-situ keratomileusis for moderate to high myopia: two prospective, randomized clinical trials. Summit technology PRK-LASIK study group. Steinert RF; Hersh PS Trans Am Ophthalmol Soc; 1998; 96():197-221; discussion 221-7. PubMed ID: 10360290 [TBL] [Abstract][Full Text] [Related]
4. Subbasal nerve fiber regeneration after LASIK and LASEK assessed by noncontact esthesiometry and in vivo confocal microscopy: prospective study. Darwish T; Brahma A; O'Donnell C; Efron N J Cataract Refract Surg; 2007 Sep; 33(9):1515-21. PubMed ID: 17720064 [TBL] [Abstract][Full Text] [Related]
5. Photorefractive keratectomy versus laser in situ keratomileusis for moderate to high myopia. A randomized prospective study. Hersh PS; Brint SF; Maloney RK; Durrie DS; Gordon M; Michelson MA; Thompson VM; Berkeley RB; Schein OD; Steinert RF Ophthalmology; 1998 Aug; 105(8):1512-22, discussion 1522-3. PubMed ID: 9709767 [TBL] [Abstract][Full Text] [Related]
6. Recovery of corneal subbasal nerve density after PRK and LASIK. Erie JC; McLaren JW; Hodge DO; Bourne WM Am J Ophthalmol; 2005 Dec; 140(6):1059-1064. PubMed ID: 16376651 [TBL] [Abstract][Full Text] [Related]
7. Randomized bilateral comparison of excimer laser in situ keratomileusis and photorefractive keratectomy for 2.50 to 8.00 diopters of myopia. El-Maghraby A; Salah T; Waring GO; Klyce S; Ibrahim O Ophthalmology; 1999 Mar; 106(3):447-57. PubMed ID: 10080199 [TBL] [Abstract][Full Text] [Related]
8. [Confocal microscopy of the corneal after photorefractive keratectomy with the excimer laser]. Böhnke M; Schipper I; Thaer A Klin Monbl Augenheilkd; 1997 Sep; 211(3):159-67. PubMed ID: 9445896 [TBL] [Abstract][Full Text] [Related]
9. Assessment of corneal alterations following laser in situ keratomileusis by confocal slit scanning microscopy. Slowik C; Somodi S; Richter A; Guthoff R Ger J Ophthalmol; 1996 Nov; 5(6):526-31. PubMed ID: 9479550 [TBL] [Abstract][Full Text] [Related]
10. [Changes in corneal sensitivity after excimer laser corneal refractive surgeries]. Yang B; Chen J; Wang Z Zhonghua Yan Ke Za Zhi; 1998 Jan; 34(1):50-2. PubMed ID: 11877154 [TBL] [Abstract][Full Text] [Related]
11. Comparison of photorefractive keratectomy with excimer laser in situ keratomileusis in correcting low myopia (from -2.00 to -5.50 diopters). A randomized study. el Danasoury MA; el Maghraby A; Klyce SD; Mehrez K Ophthalmology; 1999 Feb; 106(2):411-20; discussion 420-1. PubMed ID: 9951500 [TBL] [Abstract][Full Text] [Related]
13. Nerve growth factor concentration and implications in photorefractive keratectomy vs laser in situ keratomileusis. Lee HK; Lee KS; Kim HC; Lee SH; Kim EK Am J Ophthalmol; 2005 Jun; 139(6):965-71. PubMed ID: 15953424 [TBL] [Abstract][Full Text] [Related]
14. [In vivo evaluation of corneal structure changes after refractive procedures]. Rokita-Wala I; Gierek-Ciaciura S; Mrukwa-Kominek E Klin Oczna; 2002; 104(5-6):332-40. PubMed ID: 12664474 [TBL] [Abstract][Full Text] [Related]
15. Comparison of corneal nerve regeneration and sensitivity between LASIK and laser epithelial keratomileusis (LASEK). Lee SJ; Kim JK; Seo KY; Kim EK; Lee HK Am J Ophthalmol; 2006 Jun; 141(6):1009-1015. PubMed ID: 16765667 [TBL] [Abstract][Full Text] [Related]
16. Comparison of wound healing after photorefractive keratectomy and laser in situ keratomileusis in rabbits. Park CK; Kim JH J Cataract Refract Surg; 1999 Jun; 25(6):842-50. PubMed ID: 10374167 [TBL] [Abstract][Full Text] [Related]
17. Human tear fluid PDGF-BB, TNF-alpha and TGF-beta1 vs corneal haze and regeneration of corneal epithelium and subbasal nerve plexus after PRK. Tuominen IS; Tervo TM; Teppo AM; Valle TU; Grönhagen-Riska C; Vesaluoma MH Exp Eye Res; 2001 Jun; 72(6):631-41. PubMed ID: 11384151 [TBL] [Abstract][Full Text] [Related]
18. The corneal barrier function in myopic eyes after laser in situ keratomileusis and after photorefractive keratectomy in eyes with haze formation. Polunin GS; Kourenkov VV; Makarov IA; Polunina EG J Refract Surg; 1999; 15(2 Suppl):S221-4. PubMed ID: 10202726 [TBL] [Abstract][Full Text] [Related]
19. Corneal power, thickness, and stiffness: results of a prospective randomized controlled trial of PRK and LASIK for myopia. Hjortdal JØ; Møller-Pedersen T; Ivarsen A; Ehlers N J Cataract Refract Surg; 2005 Jan; 31(1):21-9. PubMed ID: 15721693 [TBL] [Abstract][Full Text] [Related]
20. One-year results of photorefractive keratectomy and laser in situ keratomileusis for myopia using a 213 nm wavelength solid-state laser. Tsiklis NS; Kymionis GD; Kounis GA; Pallikaris AI; Diakonis VF; Charisis S; Markomanolakis MM; Pallikaris IG J Cataract Refract Surg; 2007 Jun; 33(6):971-7. PubMed ID: 17531689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]