BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 9479547)

  • 1. Corneal reinnervation after photorefractive keratectomy and laser in situ keratomileusis: an in vivo study with a confocal videomicroscope.
    Kauffmann T; Bodanowitz S; Hesse L; Kroll P
    Ger J Ophthalmol; 1996 Nov; 5(6):508-12. PubMed ID: 9479547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo observation of corneal nerve regeneration after photorefractive keratectomy with a confocal videomicroscope.
    Heinz P; Bodanowitz S; Wiegand W; Kroll P
    Ger J Ophthalmol; 1996 Nov; 5(6):373-7. PubMed ID: 9479521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spherical and aspherical photorefractive keratectomy and laser in-situ keratomileusis for moderate to high myopia: two prospective, randomized clinical trials. Summit technology PRK-LASIK study group.
    Steinert RF; Hersh PS
    Trans Am Ophthalmol Soc; 1998; 96():197-221; discussion 221-7. PubMed ID: 10360290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subbasal nerve fiber regeneration after LASIK and LASEK assessed by noncontact esthesiometry and in vivo confocal microscopy: prospective study.
    Darwish T; Brahma A; O'Donnell C; Efron N
    J Cataract Refract Surg; 2007 Sep; 33(9):1515-21. PubMed ID: 17720064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photorefractive keratectomy versus laser in situ keratomileusis for moderate to high myopia. A randomized prospective study.
    Hersh PS; Brint SF; Maloney RK; Durrie DS; Gordon M; Michelson MA; Thompson VM; Berkeley RB; Schein OD; Steinert RF
    Ophthalmology; 1998 Aug; 105(8):1512-22, discussion 1522-3. PubMed ID: 9709767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of corneal subbasal nerve density after PRK and LASIK.
    Erie JC; McLaren JW; Hodge DO; Bourne WM
    Am J Ophthalmol; 2005 Dec; 140(6):1059-1064. PubMed ID: 16376651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Randomized bilateral comparison of excimer laser in situ keratomileusis and photorefractive keratectomy for 2.50 to 8.00 diopters of myopia.
    El-Maghraby A; Salah T; Waring GO; Klyce S; Ibrahim O
    Ophthalmology; 1999 Mar; 106(3):447-57. PubMed ID: 10080199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Confocal microscopy of the corneal after photorefractive keratectomy with the excimer laser].
    Böhnke M; Schipper I; Thaer A
    Klin Monbl Augenheilkd; 1997 Sep; 211(3):159-67. PubMed ID: 9445896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of corneal alterations following laser in situ keratomileusis by confocal slit scanning microscopy.
    Slowik C; Somodi S; Richter A; Guthoff R
    Ger J Ophthalmol; 1996 Nov; 5(6):526-31. PubMed ID: 9479550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Changes in corneal sensitivity after excimer laser corneal refractive surgeries].
    Yang B; Chen J; Wang Z
    Zhonghua Yan Ke Za Zhi; 1998 Jan; 34(1):50-2. PubMed ID: 11877154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of photorefractive keratectomy with excimer laser in situ keratomileusis in correcting low myopia (from -2.00 to -5.50 diopters). A randomized study.
    el Danasoury MA; el Maghraby A; Klyce SD; Mehrez K
    Ophthalmology; 1999 Feb; 106(2):411-20; discussion 420-1. PubMed ID: 9951500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser in situ keratomileusis versus surface ablation: visual outcomes and complications.
    Ghadhfan F; Al-Rajhi A; Wagoner MD
    J Cataract Refract Surg; 2007 Dec; 33(12):2041-8. PubMed ID: 18053901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nerve growth factor concentration and implications in photorefractive keratectomy vs laser in situ keratomileusis.
    Lee HK; Lee KS; Kim HC; Lee SH; Kim EK
    Am J Ophthalmol; 2005 Jun; 139(6):965-71. PubMed ID: 15953424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [In vivo evaluation of corneal structure changes after refractive procedures].
    Rokita-Wala I; Gierek-Ciaciura S; Mrukwa-Kominek E
    Klin Oczna; 2002; 104(5-6):332-40. PubMed ID: 12664474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of corneal nerve regeneration and sensitivity between LASIK and laser epithelial keratomileusis (LASEK).
    Lee SJ; Kim JK; Seo KY; Kim EK; Lee HK
    Am J Ophthalmol; 2006 Jun; 141(6):1009-1015. PubMed ID: 16765667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of wound healing after photorefractive keratectomy and laser in situ keratomileusis in rabbits.
    Park CK; Kim JH
    J Cataract Refract Surg; 1999 Jun; 25(6):842-50. PubMed ID: 10374167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human tear fluid PDGF-BB, TNF-alpha and TGF-beta1 vs corneal haze and regeneration of corneal epithelium and subbasal nerve plexus after PRK.
    Tuominen IS; Tervo TM; Teppo AM; Valle TU; Grönhagen-Riska C; Vesaluoma MH
    Exp Eye Res; 2001 Jun; 72(6):631-41. PubMed ID: 11384151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The corneal barrier function in myopic eyes after laser in situ keratomileusis and after photorefractive keratectomy in eyes with haze formation.
    Polunin GS; Kourenkov VV; Makarov IA; Polunina EG
    J Refract Surg; 1999; 15(2 Suppl):S221-4. PubMed ID: 10202726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corneal power, thickness, and stiffness: results of a prospective randomized controlled trial of PRK and LASIK for myopia.
    Hjortdal JØ; Møller-Pedersen T; Ivarsen A; Ehlers N
    J Cataract Refract Surg; 2005 Jan; 31(1):21-9. PubMed ID: 15721693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-year results of photorefractive keratectomy and laser in situ keratomileusis for myopia using a 213 nm wavelength solid-state laser.
    Tsiklis NS; Kymionis GD; Kounis GA; Pallikaris AI; Diakonis VF; Charisis S; Markomanolakis MM; Pallikaris IG
    J Cataract Refract Surg; 2007 Jun; 33(6):971-7. PubMed ID: 17531689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.