These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 9479752)

  • 1. Distortion product otoacoustic emissions in human newborns and adults. II. Level effects.
    Lasky RE
    J Acoust Soc Am; 1998 Feb; 103(2):992-1000. PubMed ID: 9479752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distortion product otoacoustic emissions in human newborns and adults. I. Frequency effects.
    Lasky RE
    J Acoust Soc Am; 1998 Feb; 103(2):981-91. PubMed ID: 9479751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions.
    Ortmann AJ; Abdala C
    Ear Hear; 2016; 37(5):603-14. PubMed ID: 27232070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distortion product otoacoustic emission (2f1-f2) amplitude as a function of f2/f1 frequency ratio and primary tone level separation in human adults and neonates.
    Abdala C
    J Acoust Soc Am; 1996 Dec; 100(6):3726-40. PubMed ID: 8969474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multicomponent acoustic distortion product otoacoustic emission phase in humans. II. Implications for distortion product otoacoustic emissions generation.
    Moulin A; Kemp DT
    J Acoust Soc Am; 1996 Sep; 100(3):1640-62. PubMed ID: 8817892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations.
    Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-change in DPOAE evoked by 1 s/octave sweeping primaries in newborns and adults.
    AlMakadma HA; Henin S; Prieve BA; Dyab WM; Long GR
    Hear Res; 2015 Oct; 328():157-65. PubMed ID: 26318364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. I. Effects of decreasing L2 below L1.
    Whitehead ML; McCoy MJ; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1995 Apr; 97(4):2346-58. PubMed ID: 7714254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distortion product otoacoustic emission (2f1-f2) amplitude growth in human adults and neonates.
    Abdala C
    J Acoust Soc Am; 2000 Jan; 107(1):446-56. PubMed ID: 10641653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. II. Asymmetry in L1,L2 space.
    Whitehead ML; Stagner BB; McCoy MJ; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1995 Apr; 97(4):2359-77. PubMed ID: 7714255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicomponent acoustic distortion product otoacoustic emission phase in humans. I. General characteristics.
    Moulin A; Kemp DT
    J Acoust Soc Am; 1996 Sep; 100(3):1617-39. PubMed ID: 8817891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of middle-ear immaturity on distortion product otoacoustic emission suppression tuning in infant ears.
    Abdala C; Keefe DH
    J Acoust Soc Am; 2006 Dec; 120(6):3832-42. PubMed ID: 17225410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distortion product otoacoustic emissions created through the interaction of spontaneous otoacoustic emissions and externally generated tones.
    Norrix LW; Glattke TJ
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):945-55. PubMed ID: 8759948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristic of distortion product otoacoustic emissions for preterm newborn].
    Zhang H; Guo M; Li Y
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2004 Jan; 18(1):23-6. PubMed ID: 15088346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic characteristics of distortion product otoacoustic emissions in infants and children.
    Prieve BA; Fitzgerald TS; Schulte LE; Kemp DT
    J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2871-9. PubMed ID: 9373974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2f1-f2 distortion product otoacoustic emission latency: changes with frequency and level of primaries.
    Wable J; Collet L; Berger-Vachon C; Chéry-Croze S
    Audiology; 1997; 36(2):72-82. PubMed ID: 9099405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic review of stimulus parameters for eliciting distortion product otoacoustic emissions from adult humans.
    Petersen L; Wilson WJ; Kathard H
    Int J Audiol; 2017 Jun; 56(6):382-391. PubMed ID: 28635500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion product otoacoustic emissions during the first year in term infants: a longitudinal study.
    Zang Z; Jiang ZD
    Brain Dev; 2007 Jul; 29(6):346-51. PubMed ID: 17113742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.